Gene Expression from the Imprinted Dio3 Locus Is Associated with Cell Proliferation of Cultured Brown Adipocytes

Author:

Hernandez Arturo1,Garcia Bibian2,Obregon Maria-Jesus2

Affiliation:

1. Departments of Medicine and Physiology (A.H.), Dartmouth Medical School, Lebanon, New Hampshire 03755

2. Instituto de Investigaciones Biomédicas “Alberto Sols” (B.G., M.-J.O.), Consejo Superior de Investigaciones Cientificas and Universidad Autonoma de Madrid, 28029 Madrid, Spain

Abstract

Active thyroid hormones are critical for the differentiation and function of brown adipose tissue. However, we have observed high basal and induced levels of type 3 deiodinase (D3), an enzyme that inactivates thyroid hormones and is coded by the imprinted gene Dio3, in differentiating brown preadipocytes in primary culture. We find that D3 activity and mRNA expression strongly correlate with the rate of proliferation of undifferentiated precursor cells under various conditions. Furthermore, differentiation of precursor cells to adipocytes is associated with decreased levels of D3 expression, and only very low levels of D3 mRNA are found in mature adipocytes. Dlk1, an inhibitor of adipocyte differentiation and a paternally expressed gene located in the same imprinted domain as Dio3, displayed changes in expression that parallel those of Dio3. In contrast, a 4-kb transcript for Dio3os, an antisense gene also located in the same imprinted domain, is markedly up-regulated in differentiated adipocytes. We conclude that D3 expression in differentiating preadipocytes is primarily linked to proliferating cells, whereas Dio3os expression is associated with mature adipocytes. Our results suggest that genomic imprinting and gene expression at the Dlk1/Dio3 imprinted domain may play a role in the regulation of adipocyte proliferation and differentiation.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference54 articles.

1. The mitochondrial uncoupling protein gene.;Kozak;J Biol Chem,1988

2. Brown adipose tissue hyperplasia: a fundamental mechanisms of adaptation to cold and hyperphagia;Bukowiecki;Am J Physiol,1982

3. Depressed thermogenesis but competent brown adipose tissue recruitment in mice devoid of all hormone-binding thyroid hormone receptors.;Golozoubova;Mol Endocrinol,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3