Insulin Secretion Is Increased in Pancreatic Islets of Neuropeptide Y-Deficient Mice

Author:

Imai Yumi1,Patel Hiral R.1,Hawkins Evan J.1,Doliba Nicolai M.2,Matschinsky Franz M.2,Ahima Rexford S.1

Affiliation:

1. Department of Medicine (Y.I., H.R.P., E.J.H., R.S.A.), Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

2. Department of Biochemistry and Biophysics (N.M.D., F.M.M.), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

Abstract

Neuropeptide Y (NPY), whose role in appetite regulation is well known, is also expressed in pancreatic islets. Although previous studies indicated that application of NPY to pancreatic islets inhibits insulin secretion, its physiological role in the regulation of insulin secretion is not fully understood. We hypothesized that NPY in islets tonically suppresses insulin secretion and the reduction of islet NPY increases insulin secretion. To address the hypothesis, islet function of NPY-deficient mice was analyzed. Although there was little change in glucose homeostasis in vivo, pancreatic islets from NPY-deficient mice had higher basal insulin secretion (1.5 times), glucose-stimulated insulin secretion (1.5 times), and islet mass (1.7 times), compared with wild-type mouse. Next we sought to determine whether the expression of NPY and Y1 receptor in islets was altered in hyperinsulinemia associated with obesity. Islets from C57BL/6J mice on a high-fat diet had 1.9 times higher basal insulin secretion and 2.4 times higher glucose-stimulated insulin secretion than control mice, indicating islet adaptation to obesity. Expression of NPY and Y1 receptor mRNA levels was decreased by 70 and 64%, respectively, in high-fat diet islets, compared with controls. NPY and Y1 receptor in islets were also reduced by 91 and 80%, respectively, in leptin-deficient ob/ob mice that showed marked hyperinsulinemia. Together these results suggest that endogenous NPY tonically inhibits insulin secretion from islets and a reduction of islet NPY may serve as one of the mechanisms to increase insulin secretion when islets compensate for insulin resistance associated with obesity.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3