Cyp11b1 Is Induced in the Murine Gonad by Luteinizing Hormone/Human Chorionic Gonadotropin and Involved in the Production of 11-Ketotestosterone, a Major Fish Androgen: Conservation and Evolution of the Androgen Metabolic Pathway

Author:

Yazawa Takashi1,Uesaka Miki1,Inaoka Yoshihiko1,Mizutani Tetsuya1,Sekiguchi Toshio1,Kajitani Takashi1,Kitano Takeshi2,Umezawa Akihiro3,Miyamoto Kaoru1

Affiliation:

1. Department of Biochemistry (T.Y., M.U., Y.I., T.M., T.S., T.Ka., K.M.), Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan

2. Department of Materials and Life Science (T.Ki.), Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan

3. National Research Institute for Child Health and Development (A.U.), Tokyo 157-8535, Japan

Abstract

We have shown previously that Cyp11b1, an 11β-hydroxylase responsible for glucocorticoid biosynthesis in the adrenal gland, was induced by cAMP in androgen-producing Leydig-like cells derived from mesenchymal stem cells. We found that Cyp11b1 was induced in male Leydig cells, or female theca cells, when human chorionic gonadotropin was administered in immature mice. Expression of Cyp11b1 in rodent gonads caused the production of 11-ketotestosterone (11-KT), a major fish androgen, which induces male differentiation or spermatogenesis in fish. As in teleosts, plasma concentrations of 11-KT were elevated in human chorionic gonadotropin-treated mice. In contrast to teleosts, however, plasma concentrations of 11-KT were similar in both sexes, despite levels of testosterone, a precursor substrate, being about 20 times higher in male mice. Because expression of 11β-hydroxysteroid dehydrogenase type 2, was much higher in the mouse ovary than in the testis, conversion of testosterone into 11-KT may occur more efficiently in the ovary. In a luciferase reporter system that was responsive to and activated by androgens, 11-KT efficiently activated mammalian androgen receptor-mediated transactivation. Our results suggest that the androgen metabolic pathway is conserved between teleosts and mammals, despite sexual dominance and reproductive functions of 11-KT being altered during evolution.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3