Contribution of Noradrenergic and Adrenergic Cell Groups of the Brainstem and Agouti-Related Protein-Synthesizing Neurons of the Arcuate Nucleus to Neuropeptide-Y Innervation of Corticotropin-Releasing Hormone Neurons in Hypothalamic Paraventricular Nucleus of the Rat

Author:

Füzesi Tamás1,Wittmann Gábor1,Liposits Zsolt2,Lechan Ronald M.34,Fekete Csaba13

Affiliation:

1. Department of Endocrine Neurobiology (T.F., G.W., Z.L., C.F.), Institute of Experimental Medicine, Hungarian Academy of Sciences, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest 1083, Hungary

2. Department of Neuroscience (Z.L.), Faculty of Information Technology, Pázmány Péter Catholic University, Budapest 1083, Hungary

3. Tupper Research Institute and Department of Medicine (R.M.L., C.F.), Tufts University School of Medicine, Boston, Massachusetts 02111

4. Division of Endocrinology, Diabetes, Metabolism, and Molecular Medicine, New England Medical Center, and Department of Neuroscience (R.M.L.), Tufts University School of Medicine, Boston, Massachusetts 02111

Abstract

CRH-synthesizing neurons in the hypothalamic paraventricular nucleus (PVN) integrate neuronal and hormonal inputs and serve as a final common pathway to regulate the hypothalamic-pituitary-adrenal axis. One of the neuronal regulators of CRH neurons is neuropeptide Y (NPY) contained in axons that densely innervate CRH neurons. The three main sources of NPY innervation of the PVN are the hypothalamic arcuate nucleus and the noradrenergic and adrenergic neurons of the brainstem. To elucidate the origin of the NPY-immunoreactive (NPY-IR) innervation to hypophysiotropic CRH neurons, quadruple-labeling immunocytochemistry for CRH, NPY, dopamine-β-hydroxylase, and phenylethanolamine-N-methyltransferase was performed. Approximately 63% of NPY-IR varicosities on the surface of CRH neurons were catecholaminergic (22% noradrenergic and 41% adrenergic), and 37% of NPY-IR boutons were noncatecholaminergic. By triple-labeling immunofluorescence detection of NPY, CRH, and agouti-related protein, a marker of NPY axons projecting from the arcuate nucleus, the noncatecholaminergic, NPY-ergic axon population was shown to arise primarily from the arcuate nucleus. When NPY was administered chronically into the cerebral ventricle of fed animals, a dramatic reduction of CRH mRNA was observed in the PVN (NPY vs. control integrated density units, 23.9 ± 2.7 vs. 77.09 ± 15.9). We conclude that approximately two thirds of NPY-IR innervation to hypophysiotropic CRH neurons originates from catecholaminergic neurons of the brainstem, whereas the remaining one third arises from the arcuate nucleus. The catecholaminergic NPY innervation seems to modulate the activation of CRH neurons in association with glucoprivation and infection, whereas the NPY input from the arcuate nucleus may contribute to inhibition of CRH neurons during fasting.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3