Maximal Activity of the Luteinizing Hormoneβ-Subunit Gene Requires β-Catenin

Author:

Salisbury Travis B.1,Binder April K.1,Grammer Jean C.1,Nilson John H.1

Affiliation:

1. School of Molecular Biosciences, Washington State University, Pullman, Washington 99164

Abstract

AbstractGnRH regulates expression of LHB via transcriptional regulation of early growth response 1 (EGR1), an immediate early gene that encodes a zinc-finger DNA-binding protein. EGR1 interacts functionally with the orphan nuclear receptor steroidogenic factor 1 (SF1) and pituitary homeobox 1, a member of the paired-like homeodomain family. The functional synergism of this tripartite interaction defines the maximal level of LHB transcription that can occur in response to GnRH. Results presented herein provide new evidence that the interaction between SF1 and EGR1 also requires β-catenin, a transcriptional coactivator and member of the canonical Wnt signaling pathway. For instance, targeted reduction of β-catenin attenuates activity of a GnRH-primed LHB promoter. Additional gene reporter assays indicate that overexpression of β-catenin, or its targeted reduction by small interfering RNA, modulates activity of both SF1 and EGR1 as well as their functional interaction. β-Catenin coimmunoprecipitates with SF1. Moreover, an SF1 mutant that lacks a β-catenin binding domain has compromised transcriptional activity and fails to interact synergistically with EGR1. Finally, GnRH promotes β-catenin colocalization with SF1 and EGR1 on the endogenous mouse Lhb promoter-regulatory region. Taken together, these data suggest that β-catenin binds to SF1 and that this interaction is required for subsequent functional interaction with EGR1. Thus, these data identify β-catenin as a new and required member of the basal transcriptional complex that allows the LHB promoter to achieve maximal activity in response to GnRH.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Reference46 articles.

1. Molecular biology of the pituitary gonadotropins.;Gharib;Endocr Rev,1990

2. Neuroendocrine control of human reproduction in the male.;Crowley Jr;Recent Prog Horm Res,1991

3. Recent advances in studies of the molecular basis of endocrine disease.;Jameson;Horm Metab Res,1992

4. The physiology of gonadotropin-releasing hormone (GnRH) secretion in men and women.;Crowley;Recent Prog Horm Res,1985

5. Regulation of gonadotropin gene expression.;Haisenleder;The physiology of reproduction.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3