Molecular Model of Human CYP21 Based on Mammalian CYP2C5: Structural Features Correlate with Clinical Severity of Mutations Causing Congenital Adrenal Hyperplasia

Author:

Robins Tiina1,Carlsson Jonas2,Sunnerhagen Maria3,Wedell Anna1,Persson Bengt24

Affiliation:

1. Department of Molecular Medicine and Surgery (T.R., A.W.), Center for Molecular Medicine, L8:02, Karolinska Institutet/Karolinska University Hospital, S-171 76 Stockholm, Sweden;

2. The Department of Physics, Chemistry and Biology (IFM Bioinformatics) (J.C., B.P.), S-581 83 Linköping, Sweden;

3. Molecular Biotechnology (M.S.), Linköping University, S-581 83 Linköping, Sweden;

4. Department of Cell and Molecular Biology (B.P.), Programme for Genomics and Bioinformatics, Karolinska Institutet, S-171 77 Stockholm, Sweden

Abstract

AbstractEnhanced understanding of structure-function relationships of human 21-hydroxylase, CYP21, is required to better understand the molecular causes of congenital adrenal hyperplasia. To this end, a structural model of human CYP21 was calculated based on the crystal structure of rabbit CYP2C5. All but two known allelic variants of missense type, a total of 60 disease-causing mutations and six normal variants, were analyzed using this model. A structural explanation for the corresponding phenotype was found for all but two mutants for which available clinical data are also discrepant with in vitro enzyme activity. Calculations of protein stability of modeled mutants were found to correlate inversely with the corresponding clinical severity. Putative structurally important residues were identified to be involved in heme and substrate binding, redox partner interaction, and enzyme catalysis using docking calculations and analysis of structurally determined homologous cytochrome P450s (CYPs). Functional and structural consequences of seven novel mutations, V139E, C147R, R233G, T295N, L308F, R366C, and M473I, detected in Scandinavian patients with suspected congenital adrenal hyperplasia of different severity, were predicted using molecular modeling. Structural features deduced from the models are in good correlation with clinical severity of CYP21 mutants, which shows the applicability of a modeling approach in assessment of new CYP21 mutations.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3