The Human Growth Hormone Gene Contains a Silencer Embedded within an Alu Repeat in the 3′-Flanking Region

Author:

Trujillo Miguel A.1,Sakagashira Michiko2,Eberhardt Norman L.13

Affiliation:

1. Departments of Medicine (M.A.T., N.L.E.), Minnesota 55905;

2. Third Department of Internal Medicine (M.S.), Wakayma Medical University, Wakayama 641-8510, Japan

3. Biochemistry and Molecular Biology (N.L.E.), Mayo Clinic/Mayo Foundation Rochester, Minnesota 55905;

Abstract

AbstractAlu family sequences are middle repetitive short interspersed elements (SINEs) dispersed throughout vertebrate genomes that can modulate gene transcription. The human (h) GH locus contains 44 complete and four partial Alu elements. An Sx Alu repeat lies in close proximity to the hGH-1 and hGH-2 genes in the 3′-flanking region. Deletion of the Sx Alu repeat in reporter constructs containing hGH-1 3′-flanking sequences increased reporter activity in transfected pituitary GC cells, suggesting this region contained a repressor element. Analysis of multiple deletion fragments from the 3′-flanking region of the hGH-1 gene revealed a strong orientation- and position-independent silencing activity mapping between nucleotides 2158 and 2572 encompassing the Sx Alu repeat. Refined mapping revealed that the silencer was a complex element comprising four discrete entities, including a core repressor domain (CRD), an antisilencer domain (ASE) that contains elements mediating the orientation-independent silencer activity, and two domains flanking the CRD/ASE that modulate silencer activity in a CRD-dependent manner. The upstream modulator domain is also required for orientation-independent silencer function. EMSA with DNA fragments representing all of the silencer domains yielded a complex pattern of DNA-protein interactions indicating that numerous GC cell nuclear proteins bind specifically to the CRD, ASE, and modulator domains. The silencer is GH promoter dependent and, in turn, its presence decreases the rate of promoter-associated histone acetylation resulting in a significant decrease of RNA polymerase II recruitment to the promoter. The silencer may provide for complex regulatory control of hGH gene expression in pituitary cells.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3