Roles of Epidermal Growth Factor Family in the Regulation of Postnatal Somatic Growth

Author:

Xian Cory J.12

Affiliation:

1. Department of Orthopaedic Surgery, Women’s and Children’s Hospital, North Adelaide 5006, Australia

2. Disciplines of Paediatrics and Physiology, University of Adelaide, Adelaide 5005, Australia

Abstract

Ligands of the epidermal growth factor receptor (EGF-R), known to be important for supporting tissue development particularly in the gut and brain, have also been implicated in regulating postnatal somatic growth. Although optimal levels of both milk-borne and endogenous EGF-R ligands are important for supporting postnatal somatic growth through regulating gastrointestinal growth and maturation, supraphysiological levels of EGF-R ligands can cause retarded and disproportionate growth and alter body composition because they can increase growth of epithelial tissues but decrease masses of muscle, fat, and bone. Apart from their indirect roles in influencing growth, possibly via regulating levels of IGF-I and IGF binding proteins, EGF-R ligands can regulate bone growth and modeling directly because they can enhance proliferation but suppress maturation of growth plate chondrocytes (for building a calcified cartilage scaffold for bone deposition), stimulate proliferation but inhibit differentiation of osteoblasts (for depositing bone matrix), and promote formation and function of osteoclasts (for resorption of calcified cartilage or bone). In addition, EGF-like ligands, particularly amphiregulin, can be strongly regulated by PTH, an important regulatory factor in bone modeling and remodeling. Finally, EGF-R ligands can regulate bone homeostasis by regulating a pool of progenitor cells in the bone marrow through promoting proliferation but suppressing differentiation of bone marrow mesenchymal stem cells.

Publisher

The Endocrine Society

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Reference152 articles.

1. Transforming growth factor α: expression, regulation, and biological activities.;Lee;Pharmacol Rev,1995

2. ErbB receptors and EGF-like ligands: cell lineage determination and oncogenesis through combinatorial signaling.;Pinkas-Kramarski;J Mamm Gland Biol Neoplasia,1997

3. Neuregulins and neuregulin receptors in neural development.;Gassmann;Curr Opin Neurobiol,1997

4. The neurobiology of Schwann cells.;Mirsky;Brain Pathol,1999

5. Failure of spinal cord oligodendrocyte development in mice lacking neuregulin.;Vartanian;Proc Natl Acad Sci USA,1999

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3