Hyperplasia and Cellularity Changes in IGF-1-Overexpressing Skeletal Muscle of Crucian Carp

Author:

Li Dongliang12,Lou Qiyong1,Zhai Gang12,Peng Xuyan12,Cheng Xiaoxia1,Dai Xiangyan12,Zhuo Zijian12,Shang Guohui12,Jin Xia1,Chen Xiaowen12,Han Dong1,He Jiangyan1,Yin Zhan1

Affiliation:

1. Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences (D.L., Q.L., G.Z., X.P., X.C., X.D., Z.Z., G.S., X.J., X.C., D.H., J.H., Z.Y.), Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China;

2. University of Chinese Academy of Sciences (D.L., G.Z., X.P., X.C., X.D., Z.Z., G.S.), Beijing, China

Abstract

The zebrafish skeletal muscle-specific promoter mylz2 was used to cause crucian carp overexpression of the zebrafish IGF-1 cDNA. In stable transgenic germline F1 progenies, a 5-fold increase in the level of IGF-1 in skeletal muscle was observed. Evident skeletal muscle hyperplasia was observed in the transgenic fish through histologic analysis. By analyzing the RNA sequencing transcriptome of the skeletal muscle of IGF-1 transgenic fish and nontransgenic control fish at 15 months of age, 10 966 transcripts with significant expression levels were identified with definite gene descriptions based on the corresponding zebrafish genome information. Based on the results of our RNA sequencing transcriptome profiling analysis and the results of the real-time quantitative PCR analysis performed to confirm the skeletal muscle transcriptomics analysis, several pathways, including IGF-1 signaling, aerobic metabolism, and protein degradation, were found to be activated in the IGF-1-overexpressing transgenic fish. Intriguingly, our transcriptional expression and protein assays indicated that the overexpression of IGF-1 stimulated a significant shift in the myofiber type toward a more oxidative slow muscle type. Although the body weight was surprisingly decreased by IGF-1 transgenic expression, significantly higher oxygen consumption rates were measured in IGF-1-overexpressing transgenic fish compared with their nontransgenic control fish. These results indicate that the sustained overexpression of IGF-1 in crucian carp skeletal muscle promotes myofiber hyperplasia and cellularity changes, which elicit alterations in the body energy metabolism and skeletal muscle growth.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3