Completely Humanizing Prolactin Rescues Infertility in Prolactin Knockout Mice and Leads to Human Prolactin Expression in Extrapituitary Mouse Tissues

Author:

Christensen Heather R.12,Murawsky Michael K.3,Horseman Nelson D.12,Willson Tara A.4,Gregerson Karen A.312

Affiliation:

1. Department of Molecular and Cellular Physiology (H.R.C., N.D.H., K.A.G.), University of Cincinnati, Cincinnati, Ohio 45267–0004

2. Programs in Systems Biology and Physiology (H.R.C., N.D.H., K.A.G.), University of Cincinnati, Cincinnati, Ohio 45267–0004

3. James L. Winkle College of Pharmacy (M.K.M., K.A.G.), University of Cincinnati, Cincinnati, Ohio 45267–0004

4. Cancer and Cell Biology (T.A.W.), University of Cincinnati, Cincinnati, Ohio 45267–0004

Abstract

A variety of fundamental differences have evolved in the physiology of the human and rodent prolactin (PRL) systems. The PRL gene in humans and other primates contains an alternative promoter, 5.8 kbp upstream of the pituitary transcription start site, which drives expression of PRL in “extrapituitary” tissues, where PRL is believed to exert local, or paracrine, actions. Several of these extrapituitary PRL tissues serve a reproductive function (eg, mammary gland, decidua, prostate, etc), consistent with the hypothesis that local PRL production may be involved in, and required for, normal reproductive physiology in primates. Rodent research models have generated significant findings regarding the role of PRL in reproduction. Specifically, disruption (knockout) of either the PRL gene or its receptor causes profound female reproductive defects at several levels (ovaries, preimplantation endometrium, mammary glands). However, the rodent PRL gene differs significantly from the human, most notably lacking the alternative promoter. Understanding of the physiological regulation and function of extrapituitary PRL has been limited by the absence of a readily accessible experimental model, because the rodent PRL gene does not contain the alternative promoter. To overcome these limitations, we have generated mice that have been “humanized” with regard to the structural gene and tissue expression of PRL. Here, we present the characterization of these animals, demonstrating that the human PRL transgene is responsive to known physiological regulators both in vitro and in vivo. More importantly, the expression of the human PRL transgene is able to rescue the reproductive defects observed in mouse PRL knockout (mPRL−) females, validating their usefulness in studying the function or regulation of this hormone in a manner that is relevant to human physiology.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3