Mechanisms of Palmitate-Induced Lipotoxicity in Human Osteoblasts

Author:

Gunaratnam Krishanthi1,Vidal Christopher1,Gimble Jeffrey M.2,Duque Gustavo1

Affiliation:

1. Ageing Bone Research Program (K.G., C.V., G.D.), Sydney Medical School Nepean, The University of Sydney, Penrith, New South Wales 2750, Australia

2. Centre for Stem Cell Research and Regenerative Medicine (J.M.G.), Tulane University, New Orleans, Louisiana 70118

Abstract

The interest in the relationship between fat and bone has increased steadily during recent years. Fat could have a lipotoxic effect on bone cells through the secretion of fatty acids. Palmitate is the most prevalent fatty acid secreted by adipocytes in vitro. Considering that palmitate has shown a high lipotoxic effect in other tissues, here we characterized the lipotoxic effect of palmitate on human osteoblasts (Obs). Initially we tested for changes in palmitoylation in this model. Subsequently we compared the capacity of Obs to differentiate and form bone nodules in the presence of palmitate. From a mechanistic approach, we assessed changes in nuclear activity of β-catenin and runt-related transcription factor 2 (Runx2)/phosphorylated mothers against decapentaplegic (Smad) complexes using Western blotting and confocal microscopy. Quantitative real-time PCR showed negative changes in gene expression of palmitoyltransferase genes. Furthermore, palmitate negatively affected differentiation and bone nodule formation and mineralization by Obs. Although the expression of β-catenin in palmitate-treated cells was not affected, there was a significant reduction in the transcriptional activities of both β-catenin and Runx2. Confocal microscopy showed that whereas Runx2 and Smad-4 and -5 complex formation was increased in bone morphogenetic protein-2-treated cells, palmitate had a negative effect on protein expression and colocalization of these factors. In summary, in this study we identified potential mechanisms of palmitate-induced lipotoxicity, which include changes in palmitoylation, defective mineralization, and significant alterations in the β-catenin and Runx2/Smad signaling pathways. Our evidence facilitates the understanding of the relationship between fat and bone and could allow the development of new potential therapies for osteoporosis in older persons.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3