The 5′-Deiodinases Are Not Essential for the Fasting-Induced Decrease in Circulating Thyroid Hormone Levels in Male Mice: Possible Roles for the Type 3 Deiodinase and Tissue Sequestration of Hormone

Author:

Galton Valerie Anne1,Hernandez Arturo2,St. Germain Donald L.132

Affiliation:

1. Departments of Physiology and Neurobiology (V.A.G., D.L.St.G.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756

2. Maine Medical Center Research Institute (A.H., D.L.St.G.), Scarborough, Maine 04074

3. Medicine (D.L.St.G.), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756

Abstract

Fasting in rodents is characterized by decreases in serum T4 and T3 levels but no compensatory increase in serum TSH level. The types 1 and 2 deiodinases (D1 and D2) are postulated to play key roles in mediating these changes. However, serum T4 and T3 levels in fasted 5′-deiodinase-deficient mice decreased by at least the same percentage as that observed in wild-type mice, whereas serum TSH level was unaffected. D3 activity was increased in kidney, muscle, and liver up to 4-fold during fasting, and the mean serum rT3 level was increased 3-fold in fasted D1-deficient mice, compared with fed animals. In wild-type mice, the tissue contents of T4 and T3 in liver, kidney, and muscle were unchanged or increased in fasted animals, and after the administration of [125I]T4 or [125I]T3, the radioactive content in the majority of tissues from fasted mice was increased 2- or 4-fold, respectively. These findings suggest that the observed fasting-induced reductions in the circulating T3 and T4 levels are mediated in part by increased D3 activity and by the sequestration of thyroid hormone and their metabolites in tissues. Studies performed in D3-deficient mice demonstrating a blunting of the fasting-induced decrease in serum T4 and T3 levels were consistent with this thesis. Thus, the systemic changes in thyroid hormone economy as a result of acute food deprivation are not dependent on the D1 or D2 but are mediated in part by sequestration of T4 and T3 in tissues and their enhanced metabolism by the D3.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3