Vitamin D Signaling Regulates Proliferation, Differentiation, and Myotube Size in C2C12 Skeletal Muscle Cells

Author:

Girgis Christian M.12,Clifton-Bligh Roderick J.234,Mokbel Nancy1,Cheng Kim1,Gunton Jenny E.1256

Affiliation:

1. Garvan Institute of Medical Research (C.M.G., N.M., K.C., J.E.G.), Sydney, New South Wales 2010, Australia

2. Faculty of Medicine (C.M.G., R.J.C.-B., J.E.G.), University of Sydney, Sydney, New South Wales 2008, Australia

3. The Kolling Institute of Medical Research (R.J.C.-B.), Sydney, New South Wales 2065, Australia

4. Royal North Shore Hospital (R.J.C.-B.), Sydney, New South Wales 2065, Australia

5. Department of Endocrinology and Diabetes (J.E.G.), Westmead Hospital, Sydney, New South Wales 2145, Australia

6. St Vincent's Clinical School (J.E.G.), University of New South Wales, Sydney, New South Wales 2052, Australia

Abstract

Vitamin D deficiency is linked to a range of muscle disorders including myalgia, muscle weakness, and falls. Humans with severe vitamin D deficiency and mice with transgenic vitamin D receptor (VDR) ablation have muscle fiber atrophy. However, molecular mechanisms by which vitamin D influences muscle function and fiber size remain unclear. A central question is whether VDR is expressed in skeletal muscle and is able to regulate transcription at this site. To address this, we examined key molecular and morphologic changes in C2C12 cells treated with 25-hydroxyvitamin D (25OHD) and 1,25-dihydroxyvitamin D (1,25(OH)2D). As well as stimulating VDR expression, 25(OH)D and 1,25(OH)2D dose-dependently increased expression of the classic vitamin D target cytochrome P450, family 24, subfamily A, polypeptide 1 (CYP24A1), demonstrating the presence of an autoregulatory vitamin D-endocrine system in these cells. Luciferase reporter studies demonstrated that cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1) was functional in these cells. Both 25OHD and 1,25(OH)2D altered C2C12 proliferation and differentiation. These effects were related to the increased expression of genes involved in G0/G1 arrest (retinoblastoma protein [Rb], 1.3-fold; ATM, 1.5-fold, both P < .05), downregulation of mRNAs involved in G1/S transition, including myc and cyclin-D1 (0.7- and 0.8-fold, both P < .05) and reduced phosphorylation of Rb protein (0.3-fold, P < .005). After serum depletion, 1,25(OH)2D (100nM) suppressed myotube formation with decreased mRNAs for key myogenic regulatory factors (myogenin, 0.5-fold; myf5, 0.4-fold, P < .005) but led to a 1.8-fold increase in cross-sectional size of individual myotubes associated with markedly decreased myostatin expression (0.2-fold, P < .005). These data show that vitamin D signaling alters gene expression in C2C12 cells, with effects on proliferation, differentiation, and myotube size.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3