Direct Regulation of Gonadotropin Release by Neurokinin B in Tilapia (Oreochromis niloticus)

Author:

Biran Jakob1,Golan Matan1,Mizrahi Naama1,Ogawa Satoshi2,Parhar Ishwar S.2,Levavi-Sivan Berta1

Affiliation:

1. Department of Animal Sciences (J.B., M.G., N.M., B.L.-S.), The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel

2. Brain Research Institute (S.O., I.S.P.), Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor 46150, Malaysia

Abstract

Neurokinin B (NKB) was recently identified as a key regulator of reproduction in mammals and fish. Fish were found to possess a specific novel neurokinin termed NKF. To study the role of NKB/NKF in the regulation of fish reproduction and to investigate the role of NKB/NKF and their receptors in the piscine pituitary, we have identified the NKB/tachikinin 3 receptor (tac3r) system in tilapia. Bioinformatics and phylogenetic analyses have demonstrated that the tilapia holds 1 putative tac3 gene and 2 NKB receptor genes (tac3ra and tac3rb) that clustered with other piscine Tac3 and NKB receptor lineages. Furthermore, we found that in African cichlids, NKB peptides differ from other vertebrate NKBs in their C-terminal sequence, possessing isoleucine instead of valine as the X in the NKB FXGLM-NH2-terminal consensus sequence. Signal transduction analysis demonstrated that tilapia NKB (tiNKB), tiNKF, and human NKB activated both CRE-luc and SRE-luc transcriptional activity of both tilapia and human NKB receptors. Two hours after ip injection of tiNKB, the plasma levels of both FSH and LH were increased, whereas tiNKF was more effective in increasing LH levels. However, tiNKB was more effective than tiNKF in increasing both FSH and LH from tilapia pituitary dispersed cells. Using in situ hybridization and fluorescent immunohistochemistry, we have shown that LH cells possess tac3, tac3ra, and tac3rb mRNAs, whereas FSH cells possess mainly tac3rb and tac3ra and tac3 to a much lesser extent. These results suggest that the members of the NKB/tac3r system may serve as paracrine/autocrine regulators of gonadotropin release in fish pituitary.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3