Effect of Bisphosphonates on the Rapidly Growing Male Murine Skeleton

Author:

Zhu Eric D.1,Louis Leeann1,Brooks Daniel J.1,Bouxsein Mary L.1,Demay Marie B.1

Affiliation:

1. Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114

Abstract

Bisphosphonates are effective for preventing and treating skeletal disorders associated with hyperresorption. Their safety and efficacy has been studied in adults where the growth plate is fused and there is no longitudinal bone growth and little appositional growth. Although bisphosphonate use in the pediatric population was pioneered for compassionate use in the treatment of osteogenesis imperfecta, they are being increasingly used for the treatment and prevention of bone loss in children at risk of hyperresorptive bone loss. However, the effect of these agents on the growing skeleton in disorders other than osteogenesis imperfecta has not been systematically compared. Studies were, therefore, undertaken to examine the consequences of bisphosphonate administration on the growth plate and skeletal microarchitecture during a period of rapid growth. C57Bl6/J male mice were treated from 18 to 38 days of age with vehicle, alendronate, pamidronate, zoledronate, or clodronate at doses selected to replicate those used in humans. Treatment with alendronate, pamidronate, and zoledronate, but not clodronate, led to a decrease in the number of chondrocytes per column in the hypertrophic chondrocyte layer. This was not associated with altered hypertrophic chondrocyte apoptosis or vascular invasion at the growth plate. The effects of pamidronate on trabecular microarchitecture were less beneficial than those of alendronate and zoledronate. Pamidronate did not increase cortical thickness or cortical area/total area relative to control mice. These studies suggest that bisphosphonate administration does not adversely affect skeletal growth. Long-term investigations are required to determine whether the differences observed among the agents examined impact biomechanical integrity of the growing skeleton.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3