A Novel Homozygous MC2R Variant Leading to Type-1 Familial Glucocorticoid Deficiency

Author:

Mohammed Idris12,Haris Basma1,Hussain Khalid1ORCID

Affiliation:

1. Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar

2. College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar

Abstract

Abstract Context Type 1 familial glucocorticoid deficiency (FGD) (OMIM #607397) is a rare autosomal recessive disorder due to mutations in melanocortin-2-receptor (MC2R) gene encoding the G protein-coupled adrenocorticotropic (ACTH) transmembrane receptor. Objective The aim of the study is to describe 2 siblings born to a healthy consanguineous family presenting with clinical and biochemical features of FGD, harboring a novel homozygous MC2R variant. Methods Both patients are siblings born at term via normal delivery with normal birth weights. The first sibling presented with symptoms of hypoglycemia, repeated episodes of infections starting from 2 days of age. At 18 months of age, low serum cortisol was found, and he was started on hydrocortisone replacement therapy. The second sibling developed hypoglycemia on day 1 after birth, investigations revealed low serum sodium and cortisol levels and was also commenced on hydrocortisone treatment. Whole exome sequencing (WES) and in vitro functional studies on cell line transfected with wild-type and mutant plasmid clones were undertaken. Results WES revealed a novel homozygous missense mutation c.326T>A, p.Leu109Gln in the MC2R gene. In-silico prediction tools predicted the effect of this mutation to be deleterious. In vitro study using HEK293 cells transfected with MC2R wild-type and mutant clones showed a defect in protein expression and cAMP generation when stimulated with ACTH. Conclusion Homozygous semiconserved p.Leu109Gln mutation disrupts cAMP production and MC2R protein expression leading to ACTH resistance. This study provides additional evidence that this novel pathogenic variant in MC2R results in FGD phenotypes.

Funder

Qatar National Research Fund

Publisher

The Endocrine Society

Subject

Endocrinology, Diabetes and Metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3