Alu-Mediated MEN1 Gene Deletion and Loss of Heterozygosity in a Patient with Multiple Endocrine Neoplasia Type 1

Author:

Yoshiji Satoshi1ORCID,Iwasaki Yorihiro1ORCID,Iwasaki Kanako1ORCID,Honjo Sachiko1,Hirano Koichi2,Ono Katsuhiko3,Yamazaki Yuto3,Sasano Hironobu3ORCID,Hamasaki Akihiro1ORCID

Affiliation:

1. Department of Diabetes and Endocrinology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan

2. Department of Laboratory Medicine, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan

3. Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Miyagi, Japan

Abstract

Abstract Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder caused by mutations of the tumor suppressor gene MEN1. Most of the germline MEN1 gene mutations have been small mutations, and the whole gene deletion is rarely observed. In the present study, we revealed Alu retrotransposon-mediated de novo germline deletion of the whole MEN1 gene and somatic copy-neutral loss of heterozygosity (LOH) in a patient with MEN1. The patient is a 39-year-old woman who was referred to our department for the management of prolactinoma. She was also diagnosed with primary hyperparathyroidism and suspected of MEN1. Although nucleotide sequencing did not detect any MEN1 gene mutations, multiplex ligation-dependent probe amplification (MLPA) revealed a large germline deletion of the MEN1 gene. Subsequent quantitative polymerase chain reaction (qPCR)–based copy number mapping showed a monoallelic loss of approximately 18.5-kilobase region containing the whole MEN1 gene. Intriguingly, the 2 breakpoints were flanked by Alu repetitive elements, suggesting the contribution of Alu/Alu-mediated rearrangements (AAMR) to the whole MEN1 gene deletion. Furthermore, copy number mapping using MLPA and qPCR in combination with single nucleotide polymorphism analysis revealed copy-neutral LOH as a somatic event for parathyroid tumorigenesis. In conclusion, copy number mapping revealed a novel combination of Alu/Alu-mediated de novo germline deletion of the MEN1 gene and somatic copy-neutral LOH as a cytogenetic basis for the MEN1 pathogenesis. Moreover, subsequent in silico analysis highlighted the possible predisposition of the MEN1 gene to Alu retrotransposon-mediated genomic deletion.

Publisher

The Endocrine Society

Subject

Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3