Affiliation:
1. Endocrinology, Metabolism, and Diabetes, University of Michigan , Ann Arbor, MI 48109-5674 , USA
2. Nuclear Medicine/Radiology, University of Michigan , Ann Arbor, MI 48109-0028 , USA
Abstract
Abstract
Context
Functional positron emission tomography (PET) imaging for the characterization of pheochromocytoma and paraganglioma (PCC/PGL) and for detection of metastases in malignant disease, offers valuable clinical insights that can significantly guide patient treatment.
Objective
This work aimed to evaluate a novel PET radiotracer, 3-[18F]fluoro-para-hydroxyphenethylguanidine (3-[18F]pHPG), a norepinephrine analogue, for its ability to localize PCC/PGL.
Methods
3-[18F]pHPG PET/CT whole-body scans were performed on 16 patients (8 male:8 female; mean age 47.6 ± 17.6 years; range, 19-74 years) with pathologically confirmed or clinically diagnosed PCC/PGL. After intravenous administration of 304 to 475 MBq (8.2-12.8 mCi) of 3-[18F]pHPG, whole-body PET scans were performed at 90 minutes in all patients. 3-[18F]pHPG PET was interpreted for abnormal findings consistent with primary tumor or metastasis, and biodistribution in normal organs recorded. Standardized uptake value (SUV) measurements were obtained for target lesions and physiological organ distributions.
Results
3-[18F]pHPG PET showed high radiotracer uptake and trapping in primary tumors, and metastatic tumor lesions that included bone, lymph nodes, and other solid organ sites. Physiological biodistribution was universally present in salivary glands (parotid, submandibular, sublingual), thyroid, heart, liver, adrenals, kidneys, and bladder. Comparison [68Ga]DOTATATE PET/CT was available in 10 patients and in all cases showed concordant distribution. Comparison [123I]meta-iodobenzylguanidine [123I]mIBG planar scintigraphy and SPECT/CT scans were available for 4 patients, with 3-[18F]pHPG showing a greater number of metastatic lesions.
Conclusion
We found the kinetic profile of 3-[18F]pHPG PET affords high activity retention within benign and metastatic PCC/PGL. Therefore, 3-[18F]pHPG PET imaging provides a novel modality for functional imaging and staging of malignant paraganglioma with advantages of high lesion affinity, whole-body coregistered computed tomography, and rapid same-day imaging.
Funder
Neuroendocrine Tumor Research Foundation