Ligand Binding Prolongs Androgen Receptor Protein Half-Life by Reducing its Degradation

Author:

Astapova Olga1ORCID,Seger Christina1,Hammes Stephen R1ORCID

Affiliation:

1. Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York 14642, USA

Abstract

Abstract Androgens are important in female reproduction, but the molecular actions of androgens in female reproductive tissues are not fully understood. We investigated the androgen-responsive transcriptome in human and mouse granulosa cells (GCs) and surprisingly found that the gene-regulation activity of androgen receptor (AR) in these cells is negligible. We then investigated extranuclear actions of AR and found that in human and mouse GCs, as well as in prostate cancer cells, dihydrotestosterone (DHT) dramatically increases the half-life of its own receptor protein. Using the human granulosa-like KGN cells, we show that this effect is not the result of increased AR gene transcription or protein synthesis, nor is it fully abrogated by proteasome inhibition. Knockdown of PTEN, which contributes to degradation of cytoplasmic AR, did not diminish AR accumulation in the presence of DHT. Using immunofluorescence cellular localization studies, we show that nuclear AR is selectively protected from degradation in the presence of DHT. Knockdown of importin 7 expression, a potential regulator of AR nuclear import, does not affect DHT-mediated nuclear accumulation of AR, suggesting importin 7-independent nuclear import of AR in GCs. Further, DNA binding is not required for this protective mechanism. In summary, we show that ligand binding sequesters AR in the nucleus through enhanced nuclear localization independent of DNA binding, thereby protecting it from proteasome degradation in the cytoplasm. This phenomenon distinguishes AR from other sex steroid receptors and may have physiological significance through a positive feedback loop in which androgen induces its own activity in male and female reproductive tissues.

Funder

National Institutes of Health

Publisher

The Endocrine Society

Subject

Endocrinology, Diabetes and Metabolism

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3