Functional Characterization of Xenopus Thyroid Hormone Transporters mct8 and oatp1c1

Author:

Mughal Bilal B1,Leemans Michelle1,Lima de Souza Elaine C2,le Mevel Sébastien1,Spirhanzlova Petra1,Visser Theo J2,Fini Jean-Baptiste1,Demeneix Barbara A1

Affiliation:

1. Département Régulations, Développement et Diversité Moléculaire, Muséum National d’Histoire Naturelle, Sorbonne Universities, 75005 Paris, France

2. Department of Internal Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands

Abstract

Abstract Xenopus is an excellent model for studying thyroid hormone signaling as it undergoes thyroid hormone–dependent metamorphosis. Despite the fact that receptors and deiodinases have been described in Xenopus, membrane transporters for these hormones are yet to be characterized. We cloned Xenopus monocarboxylate transporter 8 (mct8) and organic anion-transporting polypeptide 1C1 (oatpc1c1), focusing on these two transporters given their importance for vertebrate brain development. Protein alignment and bootstrap analysis showed that Xenopus mct8 and oatp1c1 are closer to their mammalian orthologs than their teleost counterparts. We functionally characterized the two transporters using a radiolabeled hormones in vitro uptake assay in COS-1 cells. Xenopus mct8 was found to actively transport both T3 and T4 bidirectionally. As to the thyroid precursor molecules, diiodotyrosine (DIT) and monoiodotyrosine (MIT), both human and Xenopus mct8, showed active efflux, but no influx. Again similar to humans, Xenopus oatp1c1 transported T4 but not T3, MIT, or DIT. We used reverse transcription quantitative polymerase chain reaction and in situ hybridization to characterize the temporal and spatial expression of mct8 and oatp1c1 in Xenopus. Specific expression of the transporter was observed in the brain, with increasingly strong expression as development progressed. In conclusion, these results show that Xenopus thyroid hormone transporters are functional and display marked spatiotemporal expression patterns. These features make them interesting targets to elucidate their roles in determining thyroid hormone availability during embryonic development.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3