CRISPR/Cas9‒Mediated Tspo Gene Mutations Lead to Reduced Mitochondrial Membrane Potential and Steroid Formation in MA-10 Mouse Tumor Leydig Cells

Author:

Fan Jinjiang1,Wang Kevin1,Zirkin Barry2,Papadopoulos Vassilios13

Affiliation:

1. Research Institute of the McGill University Health Centre and Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada

2. Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

3. Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California

Abstract

Abstract The outer mitochondrial membrane translocator protein (TSPO) binds cholesterol with high affinity and is involved in mediating its delivery into mitochondria, the rate-limiting step in hormone-induced steroidogenesis. Specific ligand binding to TSPO has been shown to initiate steroid formation. However, recent studies of the genetic deletion of Tspo have provided conflicting results. Here, we address and extend previous studies by examining the effects of Tspo-specific mutations on steroid formation in hormone- and cyclic adenosine monophosphate (cAMP)–responsive MA-10 cells, using the CRISPR/Cas9 system. Two mutant subcell lines, nG1 and G2G, each carrying a Tspo exon2-specific genome modification, and two control subcell lines, G1 and HH, each carrying a wild-type Tspo, were produced. In response to dibutyryl cAMP, the nG1 and G2G cells produced progesterone at levels significantly lower than those produced by the corresponding control cells G1 and HH. Neutral lipid homeostasis, which provides free cholesterol for steroid biosynthesis, was altered significantly in the Tspo mutant cells. Interestingly, the mitochondrial membrane potential (ΔΨm) of the Tspo mutant cells was significantly reduced compared with that of the control cells, likely because of TSPO interactions with the voltage-dependent anion channel and tubulin at the outer mitochondrial membrane. Steroidogenic acute regulatory protein (STAR) expression was induced in nG1 cells, suggesting that reduced TSPO affected STAR synthesis and/or processing. Taken together, these results provide further evidence for the critical role of TSPO in steroid biosynthesis and suggest that it may function at least in part via its regulation of ΔΨm and effects on STAR.

Funder

Canadian Institutes of Health Research

National Institutes of Health

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3