Embryonic Birthdate of Hypothalamic Leptin-Activated Neurons in Mice

Author:

Ishii Yuko12,Bouret Sebastien G.12

Affiliation:

1. The Saban Research Institute (Y.I., S.G.B.), Neuroscience Program, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027

2. Institut National de la Santé et de la Recherche Médicale (Y.I., S.G.B.), Jean-Pierre Aubert Research Center, Unité 837, Neurobese Labaratory, University Lille 2, Lille 59045, France

Abstract

The hypothalamus plays a critical role in the regulation of energy balance. Neuroanatomical and mouse genetic data have defined a core circuitry in the hypothalamus that mediates many of the effects of leptin on feeding and energy balance regulation. The present study used 5-bromo-2′-deoxyuridine (a marker of dividing cells) and a neuronal marker to systematically examine neurogenesis in the mouse embryonic hypothalamus, particularly the birth of neurons that relay leptin signaling. The vast majority of neurons in hypothalamic nuclei known to control energy balance is generated between embryonic days (E) 12 and E16, with a sharp peak of neurogenesis occurring on E12. Neurons in the dorsomedial and paraventricular nuclei and the lateral hypothalamic area are born between E12 and E14. The arcuate and ventromedial nuclei exhibit a relatively longer neurogenic period. Many neurons in these nuclei are born on E12, but some neurons are generated as late as E16. We also examined the birth of leptin-activated cells by coupling the 5-bromo-2′-deoxyuridine staining with cFos immunohistochemistry. Remarkably, the majority of leptin-activated cells in the adult hypothalamus were also born during a discrete developmental window on E12. These results provide new insight into the development of hypothalamic neurons that control feeding and identify important developmental periods when alterations in the intrauterine environment may affect hypothalamic neurogenesis and produce long-term consequences on hypothalamic cell numbers.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3