Epigenetic Modifications During Sex Change Repress Gonadotropin Stimulation of Cyp19a1a in a Teleost Ricefield Eel (Monopterus albus)

Author:

Zhang Yang1,Zhang Shen1,Liu Zhixin1,Zhang Lihong1,Zhang Weimin1

Affiliation:

1. School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China

Abstract

Abstract In vertebrates, cytochrome P450 aromatase, encoded by cyp19a1, converts androgens to estrogens and plays important roles in gonadal differentiation and development. The present study examines whether epigenetic mechanisms are involved in cyp19a1a expression and subsequent gonadal development in the hermaphroditic ricefield eel. The expression of the ricefield eel cyp19a1a was stimulated by gonadotropin via the cAMP pathway in the ovary but not the ovotestis or testis. The CpG within the cAMP response element (CRE) of the cyp19a1a promoter was hypermethylated in the ovotestis and testis compared with the ovary. The methylation levels of CpG sites around CRE in the distal region (region II) and around steroidogenic factor 1/adrenal 4 binding protein sites and TATA box in the proximal region (region I) were inversely correlated with cyp19a1a expression during the natural sex change from female to male. In vitro DNA methylation decreased the basal and forskolin-induced activities of cyp19a1a promoter. Chromatin immunoprecipitation assays indicated that histone 3 (Lys9) in both regions I and II of the cyp19a1a promoter were deacetylated and trimethylated in the testis, and in contrast to the ovary, phosphorylated CRE-binding protein failed to bind to these regions. Lastly, the DNA methylation inhibitor 5-aza-2′-deoxycytidine reversed the natural sex change of ricefield eels. These results suggested that epigenetic mechanisms involving DNA methylation and histone deacetylation and methylation may abrogate the stimulation of cyp19a1a by gonadotropins in a male-specific fashion. This may be a mechanism widely used to drive natural sex change in teleosts as well as gonadal differentiation in other vertebrates.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference38 articles.

1. The role of fetal androgen in sex differentiation in mammals;Price,1965

2. Gonadal hormones in the sex differentiation of the mammalian fetus;Jost,1965

3. Molecular biology of steroid hormone synthesis;Miller;Endocr Rev,1988

4. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences;Devlin;Aquaculture,2002

5. Mechanisms in tissue-specific regulation of estrogen biosynthesis in humans;Kamat;Trends Endocrinol Metab,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3