Sp1 and Sp3 Transcription Factors Mediate Leptin-Induced Collagen α1(I) Gene Expression in Primary Culture of Male Rat Hepatic Stellate Cells

Author:

García-Ruiz Inmaculada1,Gómez-Izquierdo Erica1,Díaz-Sanjuán Teresa1,Grau Montserrat1,Solís-Muñoz Pablo2,Muñoz-Yagüe Teresa1,Solís-Herruzo José A.1

Affiliation:

1. Research Institute (I.G-R., R.G-I., T.D-S., M.G., T.M-Y., J.A.S-H.), University Hospital “12 de Octubre,” School of Medicine, Universidad Complutense, 28041 Madrid, Spain

2. Institute of Liver Studies (P.S-M.), King's College Hospital, London SE5 9RS, United Kingdom

Abstract

AbstractMechanisms by which leptin stimulates collagen α1(I) [Col1a(I)] gene expression are unclear. The purposes of this study were to identify the trans-acting factors and cis-acting elements in Col1a(I) promoter involved in this effect as well as the pathways that are implicated. In primary cultures of rat hepatic stellate cells (HSCs), we measured the effects of leptin on Col1a(I) gene and protein expression and on the binding of nuclear proteins to the Col1a(I) promoter. We found that leptin increased Col1a(I) gene and protein expression in activated HSCs. Transient transfections showed that leptin exerted its effects through elements located between −220 and −112 bp of the Col1a(I) promoter. Gel retardation assays demonstrated that leptin induced the binding of transcription factors specific protein (Sp)-1 and Sp3 to two elements located between −161 and −110 bp of the Col1a(I) promoter. Leptin-induced Sp1/Sp3 phosphorylation, but this effect was suppressed by inhibiting or silencing Janus kinase-2, phosphatidylinositol-3-kinase, nonphagocytic adenine dinucleotide phosphate (NADPH) oxidase, or ERK1/2, by the use of antioxidants or catalase, or by preventing protein-aldehyde adduct formation. Leptin provoked oxidative stress, aldehyde-protein adduct formation, and increased gene expression of some components of the NADPH oxidase complex. In conclusion, in HSCs, leptin up-regulates Col1a(I) gene expression after activating NADPH oxidase, inducing oxidative stress, aldehyde-protein adduct formation, and ERK1/2 phosphorylation, which in turn activates Sp1/Sp3 and provokes the binding of these two factors to regulatory elements located between −161 and −110 bp of the Col1a(I) promoter. These findings may contribute to a better understanding of mechanisms involved in the leptin-induced liver fibrosis.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3