Different Signaling Mechanisms Are Involved in the Norepinephrine-Stimulated TORC1 and TORC2 Nuclear Translocation in Rat Pinealocytes

Author:

McTague J.1,Amyotte N.1,Kanyo R.1,Ferguson M.1,Chik C. L.1,Ho A. K.1

Affiliation:

1. Departments of Physiology (J.M., N.A., R.K., M.F., A.K.H.) and Medicine (C.L.C), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7

Abstract

The distribution of transducers of regulated cAMP-response element-binding protein activity (TORC) between the cytoplasm and the nucleus is tightly regulated and represents one of the main mechanisms whereby the cAMP response element activation activities of TORC are controlled. Whereas both cAMP and Ca2+ pathways can cause translocation of TORC, the relative importance of these two pathways in regulating different TORC within the same cell is unclear. In this study, we determined the mechanism that regulated TORC1 translocation and compared it with that of TORC2 in rat pinealocytes. Stimulation of pinealocytes with norepinephrine (NE), although having no effect on Torc1 transcription, caused rapid dephosphorylation of TORC1. Although NE also caused rapid dephosphorylation of TORC2, pharmacological studies revealed that TORC1 dephosphorylation could be induced by both β-adrenoceptor/cAMP and α-adrenoceptor/intracellular Ca2+ pathways contrasting with TORC2 dephosphorylation being induced mainly through the β-adrenoceptor/cAMP pathway. PhosTag gel indicated a different pattern of TORC1 desphosphorylation resulting from the selective activation of α- or β-adrenoceptors. Interestingly, only the α-adrenoceptor/intracellular Ca2+-mediated dephosphorylation could translocate TORC1 to the nucleus, whereas the β-adrenoceptor/cAMP-mediated dephosphorylation of TORC1 was ineffective. In comparison, translocation of TORC2 was induced predominantly by the β-adrenoceptor/cAMP pathway. Studies with different protein phosphatase (PP) inhibitors indicated that the NE-mediated translocation of TORC1 was blocked by cyclosporine A, a PP2B inhibitor, but that of TORC2 was blocked by okadaic acid, a PP2A inhibitor. Together these results highlight different intracellular signaling pathways that are involved in the NE-stimulated dephosphorylation and translocation of TORC1 and TORC2 in rat pinealocytes.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3