The Thyroid Axis Is Regulated by NCoR1 via Its Actions in the Pituitary

Author:

Costa-e-Sousa Ricardo H.12,Astapova Inna1,Ye Felix1,Wondisford Fredric E.3,Hollenberg Anthony N.1

Affiliation:

1. Division of Endocrinology, Diabetes and Metabolism (R.H.C.S., I.A., F.Y., A.N.H.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215

2. CAPES Foundation (R.H.C.S.), Ministry of Education of Brazil, Brasília, DF, 70040-020 Brazil

3. Department of Pediatrics and Medicine (F.E.W.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21287

Abstract

AbstractTSH is the most important biomarker in the interpretation of thyroid function in man. Its levels are determined by circulating thyroid hormone (TH) levels that feed back centrally to regulate the expression of the subunits that comprise TSH from the pituitary. The nuclear corepressor 1 (NCoR1), is a critical coregulator of the TH receptor (TR) isoforms. It has been established to play a major role in the control of TSH secretion, because mice that express a mutant NCoR1 allele (NCoRΔID) that cannot interact with the TR have normal TSH levels despite low circulating TH levels. To determine how NCoR1 controls TSH secretion, we first developed a mouse model that allowed for induction of NCoRΔID expression postnatally to rule out a developmental effect of NCoR1. Expression of NCoRΔID postnatally led to a drop in TH levels without a compensatory rise in TSH production, indicating that NCoR1 acutely controls both TH production and feedback regulation of TSH. To demonstrate that this was a cell autonomous function of NCoR1, we expressed NCoRΔID in the pituitary using a Cre driven by the glycoprotein α-subunit promoter (P-ΔID mice). Importantly, P-ΔID mice have low TH levels with decreased TSH production. Additionally, the rise in TSH during hypothyroidism is blunted in P-ΔID mice. Thus, NCoR1 plays a critical role in TH-mediated regulation of TSH in the pituitary by regulating the repressive function of the TR. Furthermore, these studies suggest that endogenous NCoR1 levels in the pituitary could establish the set point of TSH secretion.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3