PACAP Controls Adrenomedullary Catecholamine Secretion and Expression of Catecholamine Biosynthetic Enzymes at High Splanchnic Nerve Firing Rates Characteristic of Stress Transduction in Male Mice

Author:

Stroth N.1,Kuri B. A.2,Mustafa T.1,Chan S.-A.2,Smith C. B.2,Eiden L. E.1

Affiliation:

1. Section on Molecular Neuroscience (N.S., T.M., L.E.E.), Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, Maryland 20892

2. Department of Physiology and Biophysics (B.A.K., S.-A.C., C.B.S.) Case Western Reserve University, Cleveland, Ohio 44106

Abstract

The neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) is a cotransmitter of acetylcholine at the adrenomedullary synapse, where autonomic regulation of hormone secretion occurs. We have previously reported that survival of prolonged metabolic stress in mice requires PACAP-dependent biosynthesis and secretion of adrenomedullary catecholamines (CAs). In the present experiments, we show that CA secretion evoked by direct high-frequency stimulation of the splanchnic nerve is abolished in native adrenal slices from male PACAP-deficient mice. Further, we demonstrate that PACAP is both necessary and sufficient for CA secretion ex vivo during stimulation protocols designed to mimic stress. In vivo, up-regulation of transcripts encoding adrenomedullary CA-synthesizing enzymes (tyrosine hydroxylase, phenylethanolamine N-methyltransferase) in response to both psychogenic and metabolic stressors (restraint and hypoglycemia) is PACAP-dependent. Stressor-induced alteration of the adrenomedullary secretory cocktail also appears to require PACAP, because up-regulation of galanin mRNA is abrogated in male PACAP-deficient mice. We further show that hypoglycemia-induced corticosterone secretion is not PACAP-dependent, ruling out the possibility that glucocorticoids are the main mediators of the aforementioned effects. Instead, experiments with bovine chromaffin cells suggest that PACAP acts directly at the level of the adrenal medulla. By integrating prolonged CA secretion, expression of biosynthetic enzymes and production of modulatory neuropeptides such as galanin, PACAP is crucial for adrenomedullary function. Importantly, our results show that PACAP is the dominant adrenomedullary neurotransmitter during conditions of enhanced secretory demand.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3