GPRC6A Mediates the Effects of l-Arginine on Insulin Secretion in Mouse Pancreatic Islets

Author:

Pi Min1,Wu Yunpeng1,Lenchik Nataliya I1,Gerling Ivan1,Quarles L. Darryl1

Affiliation:

1. Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163

Abstract

Abstract l-Arginine (l-Arg) is an insulin secretagogue, but the molecular mechanism whereby it stimulates insulin secretion from β-cells is not known. The possibility that l-Arg regulates insulin secretion through a G protein-coupled receptor (GPCR)-mediated mechanism is suggested by the high expression of the nutrient receptor GPCR family C group 6 member A (GPRC6A) in the pancreas and TC-6 β-cells and the finding that Gprc6a−/]minus] mice have abnormalities in glucose homeostasis. To test the direct role of GPRC6A in regulating insulin secretion, we evaluated the response of pancreatic islets derived from Gprc6a−/]minus] mice to l-Arg. We found that the islet size and insulin content were decreased in pancreatic islets from Gprac6a−/]minus] mice. These alterations were selective for β-cells, because there were no abnormalities in serum glucagon levels or glucagon content of islets derived from Gprac6a−/]minus] mice. Significant reduction was observed in both the pancreatic ERK response to l-Arg administration to Gprc6a−/]minus] mice in vivo and l-Arg-induced insulin secretion and production ex vivo in islets isolated from Gprc6a−/]minus] mice. l-Arg stimulation of cAMP accumulation in isolated islets isolated from Gprc6a−/]minus] mice was also diminished. These findings suggest that l-Arg stimulation of insulin secretion in β-cells is mediated, at least in part, through GPRC6A activation of cAMP pathways.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference45 articles.

1. G-protein-coupled receptors and islet function: implications for treatment of type 2 diabetes.;Winzell;Pharmacol Ther,2007

2. Probing cell type-specific functions of Gi in vivo identifies GPCR regulators of insulin secretion.;Regard;J Clin Invest,2007

3. Osteoblast calcium-sensing receptor has characteristics of ANF/7TM receptors.;Pi;J Cell Biochem,2005

4. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome.;Pi;PLoS ONE,2008

5. Identification of a novel extracellular cation-sensing G-protein-coupled receptor.;Pi;J Biol Chem,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3