Toll-Like Receptor 4 Activation Reduces Adrenal Chromaffin Cell Excitability Through a Nuclear Factor-κB-Dependent Pathway

Author:

Lukewich Mark K.1,Lomax Alan E.12

Affiliation:

1. Departments of Biomedical and Molecular Sciences (M.K.L., A.E.L.), Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada K7L 2V7

2. Medicine (A.E.L.), Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada K7L 2V7

Abstract

The adrenal medulla contains fenestrated capillaries that allow catecholamines and neuropeptides secreted by adrenal chromaffin cells (ACCs) to readily access the circulation. These capillaries may also allow bacterial products to enter the adrenal medulla and interact with ACCs during infection. One potential mediator of this interaction is toll-like receptor 4 (TLR-4), a pattern-recognition receptor that detects lipopolysaccharide (LPS) from Gram-negative bacteria. Evidence suggests that excitable cells can express TLR-4 and that LPS can modulate important neuronal and endocrine functions. The present study was therefore performed to test the hypothesis that TLR-4 activation by LPS affects ACC excitability and secretory output. RT-PCR revealed that TLR-4, cluster of differentiation 14, myeloid differentiation protein-2, and myeloid-derived factor 88 are expressed within mouse adrenal medullae. TLR-4 immunoreactivity was observed within all tyrosine hydroxylase immunoreactive ACCs. Incubation of isolated ACCs in LPS dose dependently hyperpolarized the resting membrane potential and enhanced large conductance (BK) Ca2+-activated K+ currents. LPS (10 μg/ml) also increased rheobase, decreased the number of action potentials fired at rheobase, and reduced the percentage of ACCs exhibiting spontaneous and anodal break action potentials. Although catecholamine release was unaltered, LPS significantly reduced high-K+-stimulated neuropeptide Y release from isolated ACCs. LPS did not alter the excitability of ACCs from TLR-4−/− mice. Inhibition of nuclear factor-κB signaling with SC-514 (20 μm) abolished the effects of LPS on ACC excitability. Our findings suggest that LPS acts at TLR-4 to reduce ACC excitability and neuropeptide Y release through an nuclear factor-κB-dependent pathway.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3