Differential Effects of Acute and Chronic Estrogen Treatment on Thermogenic and Metabolic Pathways in Ovariectomized Sheep

Author:

Clarke Scott D.1,Clarke Iain J.1,Rao Alexandra1,Evans Roger G.1,Henry Belinda A.1

Affiliation:

1. Department of Physiology, Monash University, Clayton, Victoria 3800, Australia

Abstract

Estrogen is protective against weight gain, but the underlying mechanisms are not fully elucidated. We sought to characterize the effects of estrogen on energy expenditure in skeletal muscle and adipose tissue in ovariectomized sheep. Temperature probes were implanted into sc (gluteal) and visceral (retroperitoneal) fat depots and skeletal muscle of the hind limb (vastus lateralis). Food was available from 1100–1600 h to entrain postprandial thermogenesis. We characterized the effects of single (50 μg estradiol benzoate, im) and repeated (25 μg estradiol-17β, iv) injections as well as chronic (3 × 3 cm estradiol-17β implants for 7 d) treatment on heat production. A single injection of estrogen increased heat production in visceral fat and skeletal muscle, without an effect on food intake. Increased heat production in skeletal muscle was sustained by repeated estradiol-17β injections. On the other hand, continuous treatment reduced food intake but had no effect on thermogenesis. To determine possible mechanisms that underpin estradiol-17β-induced heat production, we measured femoral artery blood flow, the expression of uncoupling protein (UCP) mRNA and the phosphorylation of AMP-activated protein kinase and Akt in fat and muscle. There was little effect of either single or repeated injections of estradiol-17β on the expression of UCP1, -2, or -3 mRNA in visceral fat or skeletal muscle. Acute injection of estradiol-17β increased the phosphorylation of AMP-activated protein kinase and Akt in muscle only. Estradiol-17β treatment did not alter femoral artery blood flow. Thus, the stimulatory effect of estradiol-17β on thermogenesis in female sheep is dependent upon a pulsatile pattern of treatment and not constant continuous exposure.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3