Inhibitory Roles of Prohibitin and Chemerin in FSH-Induced Rat Granulosa Cell Steroidogenesis

Author:

Wang Qi12,Leader Arthur32,Tsang Benjamin K.1324

Affiliation:

1. Departments of Cellular and Molecular Medicine (Q.W., B.K.T.), Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6

2. University of Ottawa, and Chronic Disease Program (Q.W., A.L., B.K.T.), Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6

3. Obstetrics and Gynaecology (A.L., B.K.T.), Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6

4. World Class University Biomodulation Major (B.K.T.), Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea

Abstract

Follicular differentiation is a tightly regulated process involving various endocrine, autocrine, and paracrine factors. The biosynthesis of progesterone and estradiol in response to FSH involves the regulation of multiple steroidogenic enzymes, such as p450 cholesterol side-chain cleavage enzyme and aromatase. Here we demonstrated that prohibitin (PHB), a multifunctional protein, inhibits FSH-induced progesterone and estradiol secretion in rat granulosa cells. The mRNA abundances of cyp11a (coding p450 cholesterol side-chain cleavage enzyme) and cyp19 (coding aromatase) were also suppressed by PHB in a time-dependent manner. It is known that a novel adipokine chemerin suppresses FSH-induced steroidogenesis in granulosa cells. Chemerin up-regulates the content of PHB, and PHB knockdown attenuates the suppressive role of chemerin on steroidogenesis. In addition, inhibition of phosphatidylinositol 3-kinase/Akt pathway enhances the suppressive action of PHB, whereas expression of constitutively active Akt attenuates this response. These findings suggest that PHB is a novel negative regulator of FSH-induced steroidogenesis, and its action with chemerin may contribute to the dysregulation of steroidogenesis in the pathogenesis of polycystic ovarian syndrome.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3