Affiliation:
1. Department of Pediatrics and Herman B. Wells Center for Pediatric Research (E.S.C., H.-Y.M., Y.-C.C., A.M.H., P.T.F.), Indianapolis, Indiana 46202
2. Department of Cellular & Integrative Physiology (E.S.C., Y.-C.C., A.M.H., P.T.F.), Indiana University School of Medicine, Indianapolis, Indiana 46202
Abstract
Abstract
Glucocorticoids can cause steroid-induced diabetes or accelerate the progression to diabetes by creating systemic insulin resistance and decreasing functional β-cell mass, which is influenced by changes in β-cell function, growth, and death. The synthetic glucocorticoid agonist dexamethasone (Dex) is deleterious to functional β-cell mass by decreasing β-cell function, survival, and proliferation. However, the mechanism by which Dex decreases β-cell proliferation is unknown. Interestingly, Dex induces the transcription of an antiproliferative factor and negative regulator of epidermal growth factor receptor signaling, Mig6 (also known as gene 33, RALT, and Errfi1). We, therefore, hypothesized that Dex impairs β-cell proliferation by increasing the expression of Mig6 and thereby decreasing downstream signaling of epidermal growth factor receptor. We found that Dex induced Mig6 and decreased [3H]thymidine incorporation, an index of cellular replication, in mouse, rat, and human islets. Using adenovirally delivered small interfering RNA targeted to Mig6 in rat islets, we were able to limit the induction of Mig6 upon exposure to Dex, compared with islets treated with a control virus, and completely rescued the Dex-mediated impairment in replication. We demonstrated that both Dex and overexpression of Mig6 attenuated the phosphorylation of ERK1/2 and blocked the G1/S transition of the cell cycle. In conclusion, Mig6 functions as a molecular brake for β-cell proliferation during glucocorticoid treatment in β-cells, and thus, Mig6 may be a novel target for preventing glucocorticoid-induced impairments in functional β-cell mass.
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献