The Absence of ER-β Results in Altered Gene Expression in Ovarian Granulosa Cells Isolated From In Vivo Preovulatory Follicles

Author:

Binder April K.1,Rodriguez Karina F.1,Hamilton Katherine J.1,Stockton Patricia S.2,Reed Casey E.1,Korach Kenneth S.1

Affiliation:

1. Laboratory of Reproduction and Developmental Toxicology (A.K.B., K.F.R., K.J.H., C.E.R., K.S.K.), National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709

2. Cellular and Molecular Pathology Branch (P.S.S.), National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709

Abstract

Abstract Determining the spatial and temporal expression of genes involved in the ovulatory pathway is critical for the understanding of the role of each estrogen receptor in the modulation of folliculogenesis and ovulation. Estrogen receptor (ER)-β is highly expressed in ovarian granulosa cells, and mice lacking ER-β are subfertile due to inefficient ovulation. Previous work has focused on isolated granulosa cells or cultured follicles and, although informative, provides confounding results due to the heterogeneous cell types present including granulosa and theca cells and oocytes and exposure to in vitro conditions. Herein we isolated preovulatory granulosa cells from wild-type (WT) and ERβ-null mice using laser capture microdissection to examine the genomic transcriptional response downstream of pregnant mare serum gonadotropin (mimicking FSH) and pregnant mare serum gonadotropin/human chorionic gonadotropin (mimicking LH) stimulation. This allows for a direct comparison of in vivo granulosa cells at the same stage of development from both WT and ERβ-null ovaries. ERβ-null granulosa cells showed altered expression of genes known to be regulated by FSH (Akap12 and Runx2) as well as not previously reported (Arnt2 and Pou5f1) in WT granulosa cells. Our analysis also identified 304 genes not previously associated with ERβ in granulosa cells. LH-responsive genes including Abcb1b and Fam110c show reduced expression in ERβ-null granulosa cells; however, novel genes including Rassf2 and Megf10 were also identified as being downstream of LH signaling in granulosa cells. Collectively, our data suggest that granulosa cells from ERβ-null ovaries may not be appropriately differentiated and are unable to respond properly to gonadotropin stimulation.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3