Cell Type-Specific Metabolism of Peptidylglycineα -Amidating Monooxygenase in Anterior Pituitary*

Author:

El Meskini Rajaa1,Mains Richard E.1,Eipper Betty A.1

Affiliation:

1. Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

Abstract

Peptidylglycine α-amidating monooxygenase (PAM) is a bifunctional enzyme expressed in each major anterior pituitary cell type. We used primary cultures of adult male rat anterior pituitary to examine PAM expression, processing, and secretion in the different pituitary cell types and to compare these patterns to those observed in transfected AtT-20 corticotrope tumor cells. Immunostaining and subcellular fractionation identified PAM in pituitary secretory granules and additional vesicular compartments; in contrast, in AtT-20 cells, transfected PAM was primarily localized to the trans-Golgi network. PAM expression was highest in gonadotropes, with moderate levels in somatotropes and thyrotropes and lower levels in corticotropes and lactotropes. Under basal conditions, less than 1% of the cell content of monooxygenase activity was secreted per h, a rate comparable to the basal rate of release of individual pituitary hormones. General secretagogues stimulated PAM secretion 3- to 5-fold. Stimulation with specific hypothalamic releasing hormones demonstrated that different pituitary cell types secrete characteristic sets of PAM proteins. Gonadotropes and thyrotropes release primarily monofunctional monooxygenase. Somatotropes secrete primarily bifunctional PAM, whereas corticotropes secrete a mixture of mono- and bifunctional proteins. As observed in transfected AtT-20 cells, pituitary cells rapidly internalize the PAM/PAM-antibody complex from the cell surface. The distinctly different steady-state localizations of endogenous PAM in primary pituitary cells and transfected PAM in AtT-20 cell lines may simply reflect the increased storage capacity of primary pituitary cells.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference67 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3