Influence of the in Vivo Calcium Status on Cellular Calcium Homeostasis and the Level of the Calcium-Binding Protein Calreticulin in Rat Hepatocytes*

Author:

Mailhot Geneviève12,Petit Jean-Luc2,Demers Christian2,Gascon-Barré Marielle312

Affiliation:

1. Départements de Nutrition (G.M., M.G.-B.) Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada H2X 1P1

2. Centre de Recherche, Hôpital Saint-Luc, Centre Hospitalier de l’Université de Montréal (G.M., J.-L.P., C.D., M.G.-B.) Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada H2X 1P1

3. Départements de Pharmacologie (M.G.-B.), Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada H2X 1P1

Abstract

Abstract Little attention has been given to the consequences of the in vivo calcium status on intracellular calcium homeostasis despite several pathological states induced by perturbations of the in vivo calcium balance. The aim of these studies was to probe the influence of an in vivo calcium deficiency on the resting cytoplasmic Ca2+ concentration and the inositol-1,4,5-trisphosphate-sensitive Ca2+ pools. Studies were conducted in hepatocytes (a cell type well characterized for its cellular Ca2+ response) isolated from normal and calcium-deficient rats secondary to vitamin D depletion. Both resting cytoplasmic Ca2+ concentration and Ca2+ mobilization from inositol-1,4,5-trisphosphate -sensitive cellular pools were significantly lowered by calcium depletion. In addition, Ca deficiency was shown to significantly reduce calreticulin messenger RNA and protein levels but calcium entry through store-operated calcium channels remained unaffected, indicating that the Ca2+ entry mechanisms are still fully operational in calcium deficiency. The effects of calcium deficiency on cellular calcium homeostasis were reversible by repletion with oral calcium feeding alone or by the administration of the calcium-regulating hormone 1,25-dihydroxyvitamin D3, further strengthening the tight link between extra- and intracellular calcium. These data, therefore, challenge the currently prevailing hypothesis that extracellular Ca2+ has no significant impact on cellular Ca2+ by demonstrating that despite the large Ca2+ gradient between extra- and intracellular Ca2+ concentrations, calcium deficiency in vivo significantly alters the hormone-sensitive cellular calcium homeostasis.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3