Dehydroepiandrosterone Sulfate and Allopregnanolone Directly Stimulate Catecholamine Production via Induction of Tyrosine Hydroxylase and Secretion by Affecting Actin Polymerization

Author:

Charalampopoulos I.,Dermitzaki Ε.,Vardouli L.,Tsatsanis C.,Stournaras C.,Margioris Α. Ν.,Gravanis Α.

Abstract

AbstractAdrenal cortical cells of zona reticularis produce the neuroactive steroids dehydroepiandrosterone (DHEA), its sulfate ester dehydroepiandrosterone sulfate (DHEAS), and allopregnanolone (ALLO). An interaction between zona reticularis and adrenal medulla has been postulated based on their close proximity and their interwoven borders. The aim of this paper was to examine in vitro the possible paracrine effects of these steroids on catecholamine production from adrenomedullary chromaffin cells, using an established in vitro model of chromaffin cells, the PC12 rat pheochromocytoma cell line. We have found the following: 1) DHEA, DHEAS, and ALLO increased acutely (peak effect between 10–30 min) and dose-dependently (EC50 in the nanomolar range) catecholamine levels (norepinephrine and dopamine). 2) It appears that the acute effect of these steroids involved actin depolymerization/actin filament disassembly, a fast-response cellular system regulating trafficking of catecholamine vesicles. Specifically, 10−6m phallacidin, an actin filament stabilizer, completely prevented steroid-induced catecholamine secretion. 3) DHEAS and ALLO, but not DHEA, also affected catecholamine synthesis. Indeed, DHEAS and ALLO increased catecholamine levels at 24 h, an effect blocked by l-2-methyl-3-(-4hydroxyphenyl)alanine and 3-(hydrazinomethyl)phenol hydrochloride, inhibitors of tyrosine hydroxylase and l-aromatic amino acid decarboxylase, respectively, suggesting that this effect involved catecholamine synthesis. The latter hypothesis was confirmed by finding that DHEAS and ALLO increased both the mRNA and protein levels of tyrosine hydroxylase. In conclusion, our findings suggest that neuroactive steroids exert a direct tonic effect on adrenal catecholamine synthesis and secretion. These data associate the adrenomedullary malfunction observed in old age and neuroactive steroids.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference48 articles.

1. Neurosteroids: biosynthesis and function of these novel neuromodulators;Compagnone;Front Neuroendocrinol,2000

2. Circulating levels of allopregnanolone in humans: gender, age, and endocrine influences;Genazzani;J Clin Endocrinol Metab,1998

3. In vivo secretion of 3α-hydroxy-5α-pregnan-20-one, a potent anesthetic steroid by the adrenal gland of the rat;Holzbauer;J Steroid Biochem,1985

4. Intimate contact of chromaffin and cortical cells within the human adrenal gland forms the cellular basis for important intraadrenal interactions;Bornstein;J Clin Endocrinol Metab,1994

5. Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) as neuroactive neurosteroids;Baulieu;Proc Natl Acad Sci USA,1998

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3