Reduction in Voltage-Gated K+ Currents in Primary Cultured Rat Pancreatic β-Cells by Linoleic Acids

Author:

Feng Dan Dan,Luo Ziqiang,Roh Sang-gun,Hernandez Maria,Tawadros Neveen,Keating Damien J.,Chen Chen

Abstract

Free fatty acids (FFAs), in addition to glucose, have been shown to stimulate insulin release through the G protein-coupled receptor (GPCR)40 receptor in pancreatic β-cells. Intracellular free calcium concentration ([Ca2+]i) in β-cells is elevated by FFAs, although the mechanism underlying the [Ca2+]i increase is still unknown. In this study, we investigated the action of linoleic acid on voltage-gated K+ currents. Nystatin-perforated recordings were performed on identified rat β-cells. In the presence of nifedipine, tetrodotoxin, and tolbutamide, voltage-gated K+ currents were observed. The transient current represents less than 5%, whereas the delayed rectifier current comprises more than 95%, of the total K+ currents. A long-chain unsaturated FFA, linoleic acid (10 μm), reversibly decreased the amplitude of K+ currents (to less than 10%). This reduction was abolished by the cAMP/protein kinase A system inhibitors H89 (1 μm) and Rp-cAMP (10 μm) but was not affected by protein kinase C inhibitor. In addition, forskolin and 8′-bromo-cAMP induced a similar reduction in the K+ current as that evoked by linoleic acid. Insulin secretion and cAMP accumulation in β-cells were also increased by linoleic acid. Methyl linoleate, which has a similar structure to linoleic acid but no binding affinity to GPR40, did not change K+ currents. Treatment of cultured cells with GPR40-specific small interfering RNA significantly reduced the decrease in K+ current induced by linoleic acid, whereas the cAMP-induced reduction of K+ current was not affected. We conclude that linoleic acid reduces the voltage-gated K+ current in rat β-cells through GPR40 and the cAMP-protein kinase A system, leading to an increase in [Ca2+]i and insulin secretion.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference39 articles.

1. Type 2 diabetes: the epidemic of the new millennium.;Jovanovic;Ann Clin Lab Sci,1999

2. Epidemiology of diabetes.;Gadsby;Adv Drug Deliv Rev,2002

3. Free fatty acids and type 2 diabetes mellitus;Wyne;Am J Med,2003

4. Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40.;Itoh;Nature,2003

5. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs.;Kotarsky;Biochem Biophys Res Commun,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3