Estradiol Regulates Different Genes in Human Breast Tumor Xenografts Compared with the Identical Cells in Culture

Author:

Harvell Djuana M. E.,Richer Jennifer K.,Allred D. Craig,Sartorius Carol A.,Horwitz Kathryn B.

Abstract

In breast cancers, estrogen receptor (ER) levels are highly correlated with response to endocrine therapies. We sought to define mechanisms of estrogen (E) signaling in a solid breast tumor model using gene expression profiling. ER+ T47D-Y human breast cancer cells were grown as xenografts in ovariectomized nude mice under four conditions: 1) 17β-estradiol for 8 wk (E); 2) without E for 8 wk (control); 3) E for 7 wk followed by 1 wk of E withdrawal (Ewd); or 4) E for 8 wk plus tamoxifen for the last week. E-regulated genes were defined as those that differed significantly between control and E and/or between E and Ewd or control and Ewd. These protocols generated 188 in vivo E-regulated genes that showed two major patterns of regulation. Approximately 46% returned to basal states after Ewd (class I genes); 53% did not (class II genes). In addition, more than 70% of class II-regulated genes also failed to reverse in response to tamoxifen. These genes may be interesting for the study of hormone-resistance issues. A subset of in vivo E-regulated genes appears on lists of clinical ER discriminator genes. These may be useful therapeutic targets or markers of E activity. Comparison of in vivo E-regulated genes with those regulated in identical cells in vitro after 6 and 24 h of E treatment demonstrate only 11% overlap. This indicates the extent to which gene expression profiles are uniquely dependent on hormone-treatment times and the cellular microenvironment.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference77 articles.

1. Correlations between estrogen receptor, progesterone receptor, and patient characteristics in human breast cancer.;Clark;J Clin Oncol,1984

2. Effects of estrogen on global gene expression: identification of novel targets of estrogen action.;Charpentier;Cancer Res,2000

3. Identification of novel oestrogen receptor target genes in human ZR75–1 breast cancer cells by expression profiling.;Soulez;J Mol Endocrinol,2001

4. Development of cDNA microarray for expression profiling of estrogen-responsive genes.;Inoue;J Mol Endocrinol,2002

5. Regulation of DNA replication fork genes by 17β-estradiol.;Lobenhofer;Mol Endocrinol,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3