Author:
Harvell Djuana M. E.,Richer Jennifer K.,Allred D. Craig,Sartorius Carol A.,Horwitz Kathryn B.
Abstract
In breast cancers, estrogen receptor (ER) levels are highly correlated with response to endocrine therapies. We sought to define mechanisms of estrogen (E) signaling in a solid breast tumor model using gene expression profiling. ER+ T47D-Y human breast cancer cells were grown as xenografts in ovariectomized nude mice under four conditions: 1) 17β-estradiol for 8 wk (E); 2) without E for 8 wk (control); 3) E for 7 wk followed by 1 wk of E withdrawal (Ewd); or 4) E for 8 wk plus tamoxifen for the last week. E-regulated genes were defined as those that differed significantly between control and E and/or between E and Ewd or control and Ewd. These protocols generated 188 in vivo E-regulated genes that showed two major patterns of regulation. Approximately 46% returned to basal states after Ewd (class I genes); 53% did not (class II genes). In addition, more than 70% of class II-regulated genes also failed to reverse in response to tamoxifen. These genes may be interesting for the study of hormone-resistance issues. A subset of in vivo E-regulated genes appears on lists of clinical ER discriminator genes. These may be useful therapeutic targets or markers of E activity. Comparison of in vivo E-regulated genes with those regulated in identical cells in vitro after 6 and 24 h of E treatment demonstrate only 11% overlap. This indicates the extent to which gene expression profiles are uniquely dependent on hormone-treatment times and the cellular microenvironment.
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献