Heterodimeric Fly Glycoprotein Hormone-α2 (GPA2) and Glycoprotein Hormone-β5 (GPB5) Activate Fly Leucine-Rich Repeat-Containing G Protein-Coupled Receptor-1 (DLGR1) and Stimulation of Human Thyrotropin Receptors by Chimeric Fly GPA2 and Human GPB5

Author:

Sudo Satoko,Kuwabara Yoshimitsu,Park Jae-Il,Hsu Sheau Yu,Hsueh Aaron J. W.

Abstract

AbstractGlycoprotein hormones play important roles in thyroid and gonadal function in vertebrates. The glycoprotein hormone α-subunit forms heterodimers with different β-subunits to activate TSH or gonadotropin (LH and FSH) receptors. Recent genomic analyses allowed the identification of another α-subunit, GPA2, and another β-subunit, GPB5, in human, capable of forming heterodimers to activate TSH receptors. Based on comparative genomic searches, we isolated the fly orthologs for human GPA2 and GPB5, each consisting of 10 cysteine residues likely involved in cystine-knot formation. RT-PCR analyses in Drosophila melanogaster demonstrated the expression of GPA2 and GPB5 at different developmental stages. Immunoblot analyses further showed that fly GPA2 and GPB5 subunit proteins are of approximately 16 kDa, and coexpression of these subunits yielded heterodimers. Purified recombinant fly GPA2/GPB5 heterodimers were found to be glycoproteins with N-linked glycosylated α-subunits and nonglycosylated β-subunits, capable of stimulating cAMP production mediated by fly orphan receptor DLGR1 but not DLGR2. Although the fly GPA2/GPB5 heterodimers did not activate human TSH or gonadotropin receptors, chimeric fly GPA2/human GPB5 heterodimers stimulated human TSH receptors. These findings indicated that fly GPA2/GPB5 is a ligand for DLGR1, thus showing the ancient origin of this glycoprotein hormone-seven transmembrane receptor-G protein signaling system. The fly GPA2 also could form heterodimers with human GPB5 to activate human TSH receptors, indicating the evolutionary conservation of these genes and suggesting that the GPA2 subunit may serve as a scaffold for the β-subunit to activate downstream G protein-mediated signaling.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3