Selective Tissue Uptake of Agouti-Related Protein(82–131) and Its Modulation by Fasting

Author:

Pan Weihong,Kastin Abba J.,Yu Yongmei,Cain Courtney M.,Fairburn Tammy,Stütz Adrian M.,Morrison Christopher,Argyropoulos George

Abstract

The blood concentration of agouti-related protein (AgRP), a protein related to hyperphagia and obesity, is increased in obese human and fasted lean subjects. Because there is no saturable transport system at the blood-brain barrier for circulating AgRP to reach its central nervous system target, uptake of AgRP by peripheral organs might be physiologically meaningful. Using the biologically active fragment AgRP(82–131), we determined the pharmacokinetics of its radioactively labeled tracer after iv bolus injection and compared it with that of the vascular marker albumin. AgRP enters peripheral organs at different influx rates, all of which were higher than into brain and spinal cord. At 10 min after iv injection, the radioactivity recovered in the liver, which had the fastest influx rate for AgRP, represented intact 125I-AgRP. The adrenal gland had a moderately fast uptake (but the highest initial volume of distribution), followed by the heart, lungs, and skeletal muscle. By comparison, epididymal fat, testis, and pancreas had low permeability to AgRP. Saturation of influx was determined by coadministration of excess unlabeled AgRP and was shown to be present in the liver and adrenal gland. The influx rate and initial volume of distribution did not show a linear correlation with vascular permeability or regional blood flow. AgRP uptake by the liver and epididymal fat was significantly increased by overnight fasting, whereas that by the adrenal gland was significantly decreased in fasted mice. Thus, the differential uptake of AgRP by peripheral organs could be a regulated process that is modulated by food deprivation.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3