Ribonucleic Acid Polymerase II Binding Subunit 3 (Rpb3), a Potential Nuclear Target of Insulin-Like Growth Factor Binding Protein-3

Author:

Oufattole Mohammed,Lin Sally Wan-Jung,Liu Bingrong,Mascarenhas Desmond,Cohen Pinchas,Rodgers Buel D.

Abstract

IGF-binding protein (IGFBP)-3 has intrinsic antiproliferative and proapoptotic functions that are independent of IGF binding and may involve nuclear localization. We determined that exogenous IGFBP-3 rapidly translocates to myoblast nuclei and that a 22-residue peptide containing the metal binding domain (MBD) and nuclear localization sequence (NLS) can similarly direct chimeric GFP into myoblast nuclei. Furthermore, a non-IGF-binding IGFBP-3 mutant inhibited myoblast proliferation without stimulating apoptosis. These results suggest that IGFBP-3 inhibits muscle cell growth in an IGF-independent manner that may be influenced by its rapid nuclear localization. We therefore identified IGFBP-3 interacting proteins by screening a rat L6 myoblast cDNA library using the yeast two-hybrid assay and two N-terminal deletion mutants as bait: BP3/231 (231 residues, L61 to K291) and BP3/111 (K181-K291). Proteins previously known to interact with IGFBP-3 as well as several novel proteins were identified, including RNA polymerase II binding subunit 3 (Rpb3). The domain necessary for Rpb3 binding was subsequently identified using different IGFBP-3 deletion mutants and was localized to the MBD/NLS epitope. Rpb3/IGFBP-3 binding was confirmed by coimmunoprecipitation assays with specific antisera, whereas a NLS mutant IGFBP-3 did not associate with Rpb3, suggesting that a functional NLS is required. Rpb3 facilitates recruitment of the polymerase complex to specific transcription factors and is necessary for the transactivation of many genes. Its association with IGFBP-3 provides a functional role for IGFBP-3 in the direct modulation of gene transcription.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3