Importance of Uterine Cell Death, Renewal, and Their Hormonal Regulation in Hamsters that Show Progesterone-Dependent Implantation

Author:

Zhang Qian,Paria Bibhash C.

Abstract

This study was initiated to investigate the significance of uterine cell death and proliferation during the estrous cycle and early pregnancy and their correlation with sex steroids in hamsters where blastocyst implantation occurs in only progesterone-primed uteri. The results obtained in hamsters were also compared with mice where blastocyst implantation occurs in progesterone-primed uteri if estrogen is provided. Apoptotic cells in the uterus were detected by using terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) technique. Uterine cell proliferation was determined by 5-bromo-2′-deoxyuridine labeling followed by immunohistochemistry and methyl-tritiated [3H]thymidine labeling. Active caspase-3, an executor protein of cell death, expression was assayed by immunohistochemistry/immunofluorescence. Our results demonstrate that epithelial proliferation on the second day after mating marks the initiation of pregnancy-related uterine changes in both species despite their differences in hormonal requirements. Hamsters and mice showed subtle differences in uterine proliferative and apoptotic patterns during early pregnancy and in response to steroids. There existed almost a direct correlation between apoptosis and caspase-3 expression, suggesting uterine cell death mostly involves the caspase pathway. Consistent with these findings, we showed, for the first time, that execution of uterine epithelial cell apoptosis by caspase-3 is important for blastocyst implantation because a caspsase-3 inhibitor N-acetyl-DEVD-CHO when instilled inside the uterine lumen on d 3 of pregnancy inhibits implantation in hamsters and mice. The overall results indicate that uterine cell apoptosis and proliferation patterns are highly ordered cell-specific phenomena that play an important role in maintaining the sexual cycle and pregnancy-associated uterine changes.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3