Expression and Regulation of Progestin Membrane Receptors in the Rat Corpus Luteum

Author:

Cai Zailong,Stocco Carlos

Abstract

Despite evidence strongly supporting progesterone’s autocrine actions in the rat corpus luteum (CL), classical progesterone receptors (PR) have not been detected in this gland. Alternatively, in several other systems, progestins have been reported to activate nongenomic pathways via putative progestin membrane receptors (PMRs). The aim of this investigation was to determine whether rat CL membranes bind progestins and contain PMR homologs and whether these proteins are expressed during CL development in a manner that parallels luteal function. We found that luteal cell membranes specifically bind progesterone. Low levels of progesterone and 20α-dihydroprogesterone decreased binding of [3H]progesterone, whereas androstenedione, 17α-hydroxyprogesterone, and pregnenolone were less potent. Other steroids, including corticosterone, mifepristone, and estradiol, were ineffective. We found that the rat CL expresses five genes previously postulated to encode for putative PMRs: PMRα, PMRβ, PMRγ, PR membrane component 1 (PRMC1), and Rda288. Pmrα, Pmrγ, and Prmc1 transcripts rose steadily during pregnancy whereas Pmrβ and Rda288 remained constant. Just before parturition, concomitant with falling progesterone levels, Pmrα, Pmrβ, and Prmc1 decreased. Luteal PMRα and PRMC1 protein levels were lower in samples taken at the end of pregnancy compared with midpregnancy samples. Ergocriptine, which inhibits the secretion of prolactin, the primary luteotrophic hormone in the rat CL, reduced Pmrα, Pmrβ, and Prmc1 expression significantly. Ergocriptine effects were prevented by coadministration of prolactin. These findings provide evidence for the expression and regulation of putative membrane-bound progestin-binding proteins in the rat CL, a tissue that does not express detectable levels of nuclear progesterone receptors.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3