Activation of a Neural Brain-Testicular Pathway Rapidly Lowers Leydig Cell Levels of the Steroidogenic Acute Regulatory Protein and the Peripheral-Type Benzodiazepine Receptor while Increasing Levels of Neuronal Nitric Oxide Synthase

Author:

Herman Melissa1,Rivier Catherine1

Affiliation:

1. The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California 92037

Abstract

Activation of a neural brain-testicular pathway by the intracerebroventricular injection of the β-adrenergic agonist isoproterenol (ISO), the hypothalamic peptide corticotropin-releasing factor (CRF), or alcohol (EtOH) rapidly decreases the testosterone (T) response to human chorionic gonadotropin. To elucidate the intratesticular mechanisms responsible for this phenomenon, we investigated the influence of intracerebroventricular-injected ISO, CRF, or EtOH on levels of the steroidogenic acute regulatory (StAR) protein, the peripheral-type benzodiazepine receptor (PBR), and the cytochrome P450 side-chain cleavage enzyme in semipurified Leydig cells. ISO (10 μg), CRF (5 μg), or EtOH (5 μl of 200 proof, a dose that does not induce neuronal damage nor leaks to the periphery) rapidly decreased StAR and PBR but not cytochrome P450 side-chain cleavage enzyme protein levels. Levels of the variant of the neuronal nitric oxide synthase (nNOS) that is restricted to Leydig cells, TnNOS, significantly increased in response to ISO, CRF, and EtOH over the time course of altered StAR/PBR concentrations. However, pretreatment of the rats with Nwnitro-arginine methylester, which blocked ISO-induced increases in TnNOS, neither restored the T response to human chorionic gonadotropin nor prevented the decreases in StAR and PBR. These results provide evidence of concomitant changes in Leydig cell StAR and PBR levels in live rats. They also indicate that activation of a neural brain-testicular pathway rapidly decreases concentrations of these steroidogenic proteins while up-regulating testicular NO production. However, additional studies are necessary to elucidate the functional role played by this gas in our model.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3