Minireview: Cellular Redox State Regulates Hydroxysteroid Dehydrogenase Activity and Intracellular Hormone Potency

Author:

Agarwal Anil K.12,Auchus Richard J.34

Affiliation:

1. Nutrition and Metabolic Diseases (A.K.A.), Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8857

2. Center for Human Nutrition (A.K.A.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-8857

3. Divisions of Endocrinology and Metabolism (R.J.A.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-8857

4. The Donald W. Reynolds Cardiovascular Clinical Research Center (R.J.A.), University of Texas Southwestern Medical Center, Dallas, Texas 75390-8857

Abstract

AbstractHydroxysteroid dehydrogenases (HSDs) interconvert potent and relatively inactive forms of individual steroid hormones using nicotinamide cofactors NADPH/NADP+ and NADH/NAD+ [nicotinamide adenine dinucleotide (phosphate), reduced/oxidized forms]. Although reactions with purified enzymes in vitro may be driven in either direction depending on the assay conditions, HSD enzymes appear to function in one direction or the other in intact cells. At least for some of these enzymes, however, the apparent unidirectional metabolism actually reflects bidirectional catalysis that reaches a pseudoequilibrium state with a strong directional preference. This directional preference, in turn, derives from intracellular concentration gradients for the nicotinamide cofactors and the relative affinities of each HSD for these cofactors. Because the concentrations of free cofactor exceed those of steroids by many orders of magnitude, the activities of these enzymes are predominantly driven by cofactor abundance, which is linked to intermediary metabolism. Consequently, the amount of active steroids in cells containing HSDs may be modulated by cofactor abundance and, hence, intracellular redox state. We will review the evidence linking cofactor handling and HSD activity, speculate on additional ways that intracellular metabolism can alter HSD activity and, thus, hormone potency, and discuss fruitful avenues of further investigation.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3