Fetal Programming: Excess Prenatal Testosterone Reduces Postnatal Luteinizing Hormone, But Not Follicle-Stimulating Hormone Responsiveness, to Estradiol Negative Feedback in the Female

Author:

Sarma Hirendra N.,Manikkam Mohan,Herkimer Carol,Dell’Orco James,Welch Kathleen B.,Foster Douglas L.,Padmanabhan Vasantha

Abstract

Exposure of female sheep fetuses to excess testosterone (T) during early to midgestation produces postnatal hypergonadotropism manifest as a selective increase in LH. This hypergonadotropism may result from reduced sensitivity to estradiol (E2) negative feedback and/or increased pituitary sensitivity to GnRH. We tested the hypothesis that excess T before birth reduces responsiveness of LH and FSH to E2 negative feedback after birth. Pregnant ewes were treated with T propionate (100 mg/kg in cotton seed oil) or vehicle twice weekly from d 30–90 gestation. Responsiveness to E2 negative feedback was assessed at 12 and 24 wk of age in the ovary-intact female offspring. Our experimental strategy was first to arrest follicular growth and reduce endogenous E2 by administering the GnRH antagonist (GnRH-A), Nal-Glu (50 μg/kg sc every 12 h for 72 h), and then provide a fixed amount of exogenous E2 via an implant. Blood samples were obtained every 20 min at 12 wk and every 10 min at 24 wk before treatment, during and after GnRH-A treatment both before and after E2 implant. GnRH-A ablated LH pulsatility, reduced FSH by approximately 25%, and E2 production diminished to near detection limit of assay at both ages in both groups. Prenatal T treatment produced a precocious and selective reduction in responsiveness of LH but not FSH to E2 negative feedback, which was manifest mainly at the level of LH/GnRH pulse frequency. Collectively, these findings support the hypothesis that prenatal exposure to excess T decreases postnatal responsiveness to E2 inhibitory feedback of LH/GnRH secretion to contribute to the development of hypergonadotropism.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3