Estrogens Up-Regulate the Fas/FasL Apoptotic Pathway in Lactotropes

Author:

Jaita G.,Candolfi M.,Zaldivar V.,Zárate S.,Ferrari L.,Pisera D.,Castro M. G.,Seilicovich A.

Abstract

The Fas/FasL system provides the major apoptotic mechanism for many cell types, participating in cell turnover in hormone-dependent tissues. In the present study, we localized both Fas and FasL in anterior pituitary cells, mainly in lactotropes and somatotropes. The percentage of anterior pituitary cells showing immunoreactivity for Fas or FasL was higher in cells from rats killed in proestrus than in diestrus. Also, the proportion of pituitary cells from ovariectomized (OVX) rats expressing Fas or FasL increased in the presence of 17β-estradiol (10−9m). This steroid increased the percentage of lactotropes with immunoreactivity for Fas or FasL and the percentage of somatotropes expressing Fas. Activation of Fas by an agonist anti-Fas antibody (Mab-Fas) decreased the vi-ability—3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT assay)—of anterior pituitary cells from OVX rats cultured in the presence of 17β-estradiol. Also, membrane-bound FasL decreased cell viability—[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay (MTS assay)—only when anterior pituitary cells from OVX rats were incubated with 17β-estradiol. Moreover, FasL increased the percentage of hypodiploid anterior pituitary cells (flow cytometry). Mab-Fas increased the percentage of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL)-positive pituitary cells and lactotropes from OVX rats only when cells were incubated in the presence of 17β-estradiol. Also, Mab-Fas triggered apoptosis of anterior pituitary cells from rats killed at proestrus but not at diestrus. Our results show that 17β-estradiol up-regulates the expression of the Fas/FasL system in anterior pituitary cells and increases Fas-induced apoptosis in lactotropes, suggesting that Fas-induced apoptosis could be involved in the pituitary cell renewal during the estrous cycle.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference41 articles.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3