Dehydroepiandrosterone Inhibits Glucose Flux Through the Pentose Phosphate Pathway in Human and Mouse Endometrial Stromal Cells, Preventing Decidualization and Implantation

Author:

Frolova Antonina I.1,O'Neill Kathleen1,Moley Kelle H.1

Affiliation:

1. Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

Endometrial stromal cells (ESC) must undergo a hormone-driven differentiation to form decidual cells as a requirement of proper embryo implantation. Recent studies from our laboratory have demonstrated that decidualizing cells require glucose transporter 1 expression and an increase in glucose use to complete this step. The present study focuses on the glucose-dependent molecular and metabolic pathways, which are required by ESC for decidualization. Inhibition of glycolysis had no effect on decidualization. However, blockade of the pentose phosphate pathway (PPP) with pharmacologic inhibitors 6-aminonicotinamide or dehydroepiandrosterone (DHEA), and short hairpin RNA-mediated knockdown of glucose-6-phosphate dehydrogenase, the rate-limiting step in the PPP, both led to strong decreases in decidual marker expression in vitro and decreased decidualization in vivo. Additionally, the studies demonstrate that inhibition is due, at least in part, to ribose-5-phosphate depletion, because exogenous nucleoside administration restored decidualization in these cells. The finding that PPP inhibition prevents decidualization of ESC is novel and clinically important, because DHEA is an endogenous hormone produced by the adrenal glands and elevated in a high proportion of women who have polycystic ovary syndrome, the most common endocrinopathy in reproductive age women. Together, this data suggest a mechanistic link between increased DHEA levels, use of glucose via the PPP, and pregnancy loss.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3