Glucagon-Like Peptide (GLP)-1(9-36)Amide-Mediated Cytoprotection Is Blocked by Exendin(9-39) Yet Does Not Require the Known GLP-1 Receptor

Author:

Ban Kiwon12,Kim Kyoung-Han12,Cho Chan-Kyung3,Sauvé Meghan45,Diamandis Eleftherios P.3,Backx Peter H.162,Drucker Daniel J.3645,Husain Mansoor13672

Affiliation:

1. Departments of Physiology (K.B., K.-H.K., P.H.B., M.H.), University of Toronto, Toronto, Ontario, Canada M5G 2C4

2. Department of Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research (K.B., K.-H.K., P.H.B., M.H.), University of Toronto, Toronto, Ontario, Canada M5G 2C4

3. Department of Laboratory Medicine and Pathobiology (C.-K.C., E.P.D., D.J.D., M.H.), University of Toronto, Toronto, Ontario, Canada M5G 2C4

4. Department of Samuel Lunenfeld Research Institute (M.S., D.J.D.), University of Toronto, Toronto, Ontario, Canada M5G 2C4

5. Department of Banting and Best Diabetes Centre (M.S., D.J.D.), University of Toronto, Toronto, Ontario, Canada M5G 2C4

6. Department of Medicine (P.H.B., D.J.D., M.H.), University of Toronto, Toronto, Ontario, Canada M5G 2C4

7. Department of Toronto General Hospital Research Institute (M.H.), University of Toronto, Toronto, Ontario, Canada M5G 2C4

Abstract

The widely expressed dipeptidyl peptidase-4 enzyme rapidly cleaves the gut hormone glucagon-like peptide-1 [GLP-1(7-36)amide] at the N terminus to generate GLP-1(9-36)amide. Both intact GLP-1(7-36)amide and GLP-1(9-36)amide exert cardioprotective actions in rodent hearts; however, the mechanisms underlying the actions of GLP-1(9-36)amide remain poorly understood. We used mass spectrometry of coronary effluents to demonstrate that isolated mouse hearts rapidly convert infused GLP-1(7-36)amide to GLP-1(9-36)amide. After ischemia-reperfusion (I/R) injury of isolated mouse hearts, administration of GLP-1(9-36)amide or exendin-4 improved functional recovery and reduced infarct size. The direct actions of these peptides were studied in cultured neonatal mouse cardiomyocytes. Both GLP-1(9-36)amide and exendin-4 increased levels of cAMP and phosphorylation of ERK1/2 and the phosphoinositide 3-kinase target protein kinase B/Akt. In I/R injury models in vitro, both peptides improved mouse cardiomyocyte viability and reduced lactate dehydrogenase release and caspase-3 activation. These effects were attenuated by inhibitors of ERK1/2 and phosphoinositide 3-kinase. Unexpectedly, the cardioprotective actions of GLP-1(9-36)amide were blocked by exendin(9-39) yet preserved in Glp1r−/− cardiomyocytes. Furthermore, GLP-1(9-36)amide, but not exendin-4, improved the survival of human aortic endothelial cells undergoing I/R injury, actions sensitive to the nitric oxide synthase inhibitor, N(G)-nitro-l-arginine methyl ester (L-NAME). In summary, our findings demonstrate separate actions for GLP-1(9-36)amide vs. the GLP-1R agonist exendin-4 and reveal the existence of a GLP-1(9-36)amide-responsive, exendin(9-39)-sensitive, cardioprotective signaling pathway distinct from that associated with the classical GLP-1 receptor.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 185 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3