Affiliation:
1. Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214
Abstract
Abstract
The adult differentiated insulin-secreting pancreatic islet β-cell experiences slow growth. This study shows that atrial natriuretic peptide (ANP) stimulates cell proliferation and [3H]thymidine incorporation in INS-1E glucose-sensitive rat β-cell line cells and isolated rat islet DNA. In addition, cGMP, the second messenger of natriuretic peptide receptors (NPR) A and B, stimulated islet DNA biosynthesis. The NPR-A receptor was expressed in INS-1E cells and islets. ANP-stimulated INS-1E cell DNA biosynthesis was blocked by preincubation with LY294002 (50 μm), an inhibitor of phosphatidylinositol 3′-kinase (PI3K). An indicator of cell cycle progression, cyclin D2 mRNA was increased by 2- to 3-fold in ANP- or 8-Br-cGMP-treated INS-1E cells and islets, and these responses were inhibited by LY294002. ANP and 8-Br-cGMP stimulated the phosphorylation of Akt and Foxo1a in INS-1E cells and islets, and LY294002 inhibited these responses. In contrast, ANP reduced the levels of phospho-ERK in INS-1E cells. Pancreas duodenum homeobox-1 (PDX-1) is essential for pancreas development, insulin production, and glucose homeostasis, and ANP increased PDX-1 mRNA levels by 2- to 3-fold in INS-1E cells and islets. The levels of glucokinase mRNA in islets and INS-1E cells were also increased in response to ANP. The evidence suggests that pancreatic β-cell NPR-A stimulation results in activation of a growth-promoting signaling pathway that includes PI3K/Akt/Foxo1a/cyclin D2. These data support the conclusion that the activation of Akt by ANP or 8-Br-cGMP promotes cyclin D2, PDX-1, and glucokinase transcription by phosphorylating and restricting Foxo1a activity.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献