Atrial Natriuretic Peptide Promotes Pancreatic Islet β-Cell Growth and Akt/Foxo1a/Cyclin D2 Signaling

Author:

You Hui1,Laychock Suzanne G.1

Affiliation:

1. Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214

Abstract

Abstract The adult differentiated insulin-secreting pancreatic islet β-cell experiences slow growth. This study shows that atrial natriuretic peptide (ANP) stimulates cell proliferation and [3H]thymidine incorporation in INS-1E glucose-sensitive rat β-cell line cells and isolated rat islet DNA. In addition, cGMP, the second messenger of natriuretic peptide receptors (NPR) A and B, stimulated islet DNA biosynthesis. The NPR-A receptor was expressed in INS-1E cells and islets. ANP-stimulated INS-1E cell DNA biosynthesis was blocked by preincubation with LY294002 (50 μm), an inhibitor of phosphatidylinositol 3′-kinase (PI3K). An indicator of cell cycle progression, cyclin D2 mRNA was increased by 2- to 3-fold in ANP- or 8-Br-cGMP-treated INS-1E cells and islets, and these responses were inhibited by LY294002. ANP and 8-Br-cGMP stimulated the phosphorylation of Akt and Foxo1a in INS-1E cells and islets, and LY294002 inhibited these responses. In contrast, ANP reduced the levels of phospho-ERK in INS-1E cells. Pancreas duodenum homeobox-1 (PDX-1) is essential for pancreas development, insulin production, and glucose homeostasis, and ANP increased PDX-1 mRNA levels by 2- to 3-fold in INS-1E cells and islets. The levels of glucokinase mRNA in islets and INS-1E cells were also increased in response to ANP. The evidence suggests that pancreatic β-cell NPR-A stimulation results in activation of a growth-promoting signaling pathway that includes PI3K/Akt/Foxo1a/cyclin D2. These data support the conclusion that the activation of Akt by ANP or 8-Br-cGMP promotes cyclin D2, PDX-1, and glucokinase transcription by phosphorylating and restricting Foxo1a activity.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3